Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3623
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPehlivan S.-
dc.contributor.authorAkbugday B.-
dc.contributor.authorAkan A.-
dc.contributor.authorSadighzadeh R.-
dc.date.accessioned2023-06-16T15:01:48Z-
dc.date.available2023-06-16T15:01:48Z-
dc.date.issued2022-
dc.identifier.isbn9.78167E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864841-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3623-
dc.description30th Signal Processing and Communications Applications Conference, SIU 2022 -- 15 May 2022 through 18 May 2022 -- 182415en_US
dc.description.abstractIn this study, a method is proposed to detect the presence of olfactory stimuli from Electroencephalogram (EEG) signals to be used in neuromarketing applications. Odor is used in different ways in neuromarketing applications since it stimulates various emotions. Multi-channel EEG signals were recorded from the volunteers while they were subjected to two open boxes of unscented and scented products in succession. After the necessary preprocessing steps, EEG sub-band powers were calculated for 14 EEG channels. These features were classified using machine learning methods, and the EEG segments in which the olfactory stimulus was present were classified. The results show that the proposed method gives successful results with 92% accuracy, 93% precision, 92% recall, and 92% F1-score using the Random Forest classifier. © 2022 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2022 30th Signal Processing and Communications Applications Conference, SIU 2022en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectroencephalogram (EEG)en_US
dc.subjectMachine learningen_US
dc.subjectNeuromarketingen_US
dc.subjectolfactory stimulusen_US
dc.subjectBiomedical signal processingen_US
dc.subjectDecision treesen_US
dc.subjectMachine learningen_US
dc.subjectClassifiedsen_US
dc.subjectElectroencephalogramen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectMachine-learningen_US
dc.subjectMulti channelen_US
dc.subjectNeuromarketingen_US
dc.subjectOlfactory stimulusen_US
dc.subjectPoweren_US
dc.subjectPre-processing stepen_US
dc.subjectSubbandsen_US
dc.subjectElectroencephalographyen_US
dc.titleDetection of Olfactory Stimulus from EEG Signals for Neuromarketing Applicationsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU55565.2022.9864841-
dc.identifier.scopus2-s2.0-85138703036en_US
dc.authorscopusid57215310544-
dc.authorscopusid35617283100-
dc.authorscopusid57203171366-
dc.identifier.wosWOS:001307163400180en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2714.pdf
  Restricted Access
4.64 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

94
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.