Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3624
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cura O.K. | - |
dc.contributor.author | Yilmaz G.C. | - |
dc.contributor.author | Ture H.S. | - |
dc.contributor.author | Akan A. | - |
dc.date.accessioned | 2023-06-16T15:01:49Z | - |
dc.date.available | 2023-06-16T15:01:49Z | - |
dc.date.issued | 2022 | - |
dc.identifier.isbn | 9.78167E+12 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU55565.2022.9864898 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3624 | - |
dc.description | 30th Signal Processing and Communications Applications Conference, SIU 2022 -- 15 May 2022 through 18 May 2022 -- 182415 | en_US |
dc.description.abstract | Alzheimer's dementia is a highly prevalent disorder among all neurological disorders. In this study, a new method based on time-Frequency (TF) representations such as Short Time Fourier Transform (STFT) and Synchrosqueezing Transform (SST) is proposed to classify EEG segments of AD patients and control subjects. Previous studies have shown that there are distinctive differences in the EEG signals of control subjects and AD patients in the low-frequency EEG subbands. Hence, in the proposed method TF representations of all EEG subbands are used for feature calculation separately. TF energy distributions obtained by SST and STFT approaches are used to calculate 13 TF features to gather distinctive information between EEG segments of control subjects and AD patients. Various classification techniques are utilized to distinguish feature sets of two the groups. Simulation results demonstrate that the proposed method achieve outstanding validation accuracy rates. © 2022 IEEE. | en_US |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2022 30th Signal Processing and Communications Applications Conference, SIU 2022 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Alzheimer's dementia | en_US |
dc.subject | EEG classification | en_US |
dc.subject | Short Time Fourier Transform | en_US |
dc.subject | Synchrosqueezing Transform | en_US |
dc.subject | time-Frequency method | en_US |
dc.subject | Alzheimer dementia | en_US |
dc.subject | Control subject | en_US |
dc.subject | EEG classification | en_US |
dc.subject | Short time Fourier transforms | en_US |
dc.subject | Subbands | en_US |
dc.subject | Synchrosqueezing | en_US |
dc.subject | Synchrosqueezing transform | en_US |
dc.subject | Time-frequency approach | en_US |
dc.subject | Time-frequency methods | en_US |
dc.subject | Time-frequency representations | en_US |
dc.subject | Neurodegenerative diseases | en_US |
dc.title | Classification of Dementia EEG Based on Sub-bands Using Time-Frequency Approaches | en_US |
dc.title.alternative | Zaman-frekans Yaklaşimlarini Kullanarak Alt Bant Tabanli Demans EEG Siniflandirmasi | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SIU55565.2022.9864898 | - |
dc.identifier.scopus | 2-s2.0-85138673841 | en_US |
dc.authorscopusid | 57195223021 | - |
dc.authorscopusid | 16644499400 | - |
dc.authorscopusid | 35617283100 | - |
dc.identifier.wos | WOS:001307163400237 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | tr | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2715.pdf Restricted Access | 2.22 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Page view(s)
86
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.