Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3624
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura O.K.-
dc.contributor.authorYilmaz G.C.-
dc.contributor.authorTure H.S.-
dc.contributor.authorAkan A.-
dc.date.accessioned2023-06-16T15:01:49Z-
dc.date.available2023-06-16T15:01:49Z-
dc.date.issued2022-
dc.identifier.isbn9.78167E+12-
dc.identifier.urihttps://doi.org/10.1109/SIU55565.2022.9864898-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3624-
dc.description30th Signal Processing and Communications Applications Conference, SIU 2022 -- 15 May 2022 through 18 May 2022 -- 182415en_US
dc.description.abstractAlzheimer's dementia is a highly prevalent disorder among all neurological disorders. In this study, a new method based on time-Frequency (TF) representations such as Short Time Fourier Transform (STFT) and Synchrosqueezing Transform (SST) is proposed to classify EEG segments of AD patients and control subjects. Previous studies have shown that there are distinctive differences in the EEG signals of control subjects and AD patients in the low-frequency EEG subbands. Hence, in the proposed method TF representations of all EEG subbands are used for feature calculation separately. TF energy distributions obtained by SST and STFT approaches are used to calculate 13 TF features to gather distinctive information between EEG segments of control subjects and AD patients. Various classification techniques are utilized to distinguish feature sets of two the groups. Simulation results demonstrate that the proposed method achieve outstanding validation accuracy rates. © 2022 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2022 30th Signal Processing and Communications Applications Conference, SIU 2022en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlzheimer's dementiaen_US
dc.subjectEEG classificationen_US
dc.subjectShort Time Fourier Transformen_US
dc.subjectSynchrosqueezing Transformen_US
dc.subjecttime-Frequency methoden_US
dc.subjectAlzheimer dementiaen_US
dc.subjectControl subjecten_US
dc.subjectEEG classificationen_US
dc.subjectShort time Fourier transformsen_US
dc.subjectSubbandsen_US
dc.subjectSynchrosqueezingen_US
dc.subjectSynchrosqueezing transformen_US
dc.subjectTime-frequency approachen_US
dc.subjectTime-frequency methodsen_US
dc.subjectTime-frequency representationsen_US
dc.subjectNeurodegenerative diseasesen_US
dc.titleClassification of Dementia EEG Based on Sub-bands Using Time-Frequency Approachesen_US
dc.title.alternativeZaman-frekans Yaklaşimlarini Kullanarak Alt Bant Tabanli Demans EEG Siniflandirmasien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU55565.2022.9864898-
dc.identifier.scopus2-s2.0-85138673841en_US
dc.authorscopusid57195223021-
dc.authorscopusid16644499400-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:001307163400237en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2715.pdf
  Restricted Access
2.22 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

86
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.