Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3635
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCebeci B.-
dc.contributor.authorAkan A.-
dc.contributor.authorDemiralp T.-
dc.contributor.authorErbey M.-
dc.date.accessioned2023-06-16T15:01:50Z-
dc.date.available2023-06-16T15:01:50Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO50054.2020.9299244-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3635-
dc.description2020 Medical Technologies Congress, TIPTEKNO 2020 -- 19 November 2020 through 20 November 2020 -- 166140en_US
dc.description.abstractIn this study, it is determined individual-based features which are used to estimate emotional negative valence and compared the features effectiveness with different classifiers. Ten movie clips are shown to subjects as an emotional stimuli and EEG recording is recorded synchronously. Emotional valence value is scored in [-7 7] Likert scale by the subjects immediately after video ended. According to lowest and highest valence values, two classes are generated. The data is processed on an individual basis and personal spatial filters is obtained by Independent Component Analysis. After calculating the spectrogram of the spatial filtered data, features are extracted by subtracting amplitudes of 3Hz averaged frequency bands. The result of feature selection, it is observed that features from beta and gamma bands are much more effective. The success rate of the selected features was tested with five classifiers by cross validation, and high performance was obtained from multilayer perceptron classifiers and the instance- based k-nearest neighborhood algorithm (IBk-NN). The average accuracies of IBk-NN and multilayer classifier are achieved 86% ±8 and 83% ±9, respectively. © 2020 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2020 - Tip Teknolojileri Kongresi - 2020 Medical Technologies Congress, TIPTEKNO 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEEGen_US
dc.subjectemotionen_US
dc.subjectfilmen_US
dc.subjectnegative valenceen_US
dc.subjectBeamformingen_US
dc.subjectBiomedical engineeringen_US
dc.subjectIndependent component analysisen_US
dc.subjectMultilayer neural networksen_US
dc.subjectMultilayersen_US
dc.subjectNearest neighbor searchen_US
dc.subjectCross validationen_US
dc.subjectEEG recordingen_US
dc.subjectEmotional valencesen_US
dc.subjectIndividual-baseden_US
dc.subjectK-nearest neighborhoodsen_US
dc.subjectMulti-layer perceptron classifiersen_US
dc.subjectSpatial filtersen_US
dc.subjectSpectrogramsen_US
dc.subjectClassification (of information)en_US
dc.titleIndividual-based Estimation of Valence with EEGen_US
dc.title.alternativeEEG ile Kisi-Temelli Negatif Duygulanim Kestirimien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO50054.2020.9299244-
dc.identifier.scopus2-s2.0-85099473224en_US
dc.identifier.scopusWOS:000659419900031en_US
dc.authorscopusid36165097400-
dc.authorscopusid7004701236-
dc.authorscopusid57204155672-
dc.identifier.wosWOS:000659419900031en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2721.pdf
  Restricted Access
474.8 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

66
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.