Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3638
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzdemir M.A.-
dc.contributor.authorElagoz B.-
dc.contributor.authorAlaybeyoglu Soy A.-
dc.contributor.authorAkan A.-
dc.date.accessioned2023-06-16T15:01:50Z-
dc.date.available2023-06-16T15:01:50Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO50054.2020.9299256-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3638-
dc.description2020 Medical Technologies Congress, TIPTEKNO 2020 -- 19 November 2020 through 20 November 2020 -- 166140en_US
dc.description.abstractIn this study, it was aimed to recognize the emotional state from facial images using the deep learning method. In the study, which was approved by the ethics committee, a custom data set was created using videos taken from 20 male and 20 female participants while simulating 7 different facial expressions (happy, sad, surprised, angry, disgusted, scared, and neutral). Firstly, obtained videos were divided into image frames, and then face images were segmented using the Haar library from image frames. The size of the custom data set obtained after the image preprocessing is more than 25 thousand images. The proposed convolutional neural network (CNN) architecture which is mimics of LeNet architecture has been trained with this custom dataset. According to the proposed CNN architecture experiment results, the training loss was found as 0.0115, the training accuracy was found as 99.62%, the validation loss was 0.0109, and the validation accuracy was 99.71%. © 2020 IEEE.en_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2020 - Tip Teknolojileri Kongresi - 2020 Medical Technologies Congress, TIPTEKNO 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectEmotion Recognitionen_US
dc.subjectFacial Expressionen_US
dc.subjectBiomedical engineeringen_US
dc.subjectConvolutional neural networksen_US
dc.subjectFace recognitionen_US
dc.subjectLearning systemsen_US
dc.subjectNetwork architectureen_US
dc.subjectEmotional stateen_US
dc.subjectEthics committeeen_US
dc.subjectFacial emotionsen_US
dc.subjectFacial Expressionsen_US
dc.subjectFacial imagesen_US
dc.subjectImage preprocessingen_US
dc.subjectLearning methodsen_US
dc.subjectTraining accuracyen_US
dc.subjectDeep learningen_US
dc.titleDeep Learning Based Facial Emotion Recognition Systemen_US
dc.title.alternativeDerin Ögrenme Tabanli Yüz Duygulari Tanima Sistemien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO50054.2020.9299256-
dc.identifier.scopus2-s2.0-85099442002en_US
dc.authorscopusid57206479576-
dc.authorscopusid57221553007-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:000659419900042en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2724.pdf
  Restricted Access
471.02 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

100
checked on Nov 18, 2024

Download(s)

8
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.