Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3639
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzdemir M.A.-
dc.contributor.authorGuren O.-
dc.contributor.authorCura O.K.-
dc.contributor.authorAkan A.-
dc.contributor.authorOnan A.-
dc.date.accessioned2023-06-16T15:01:51Z-
dc.date.available2023-06-16T15:01:51Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO50054.2020.9299260-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3639-
dc.description2020 Medical Technologies Congress, TIPTEKNO 2020 -- 19 November 2020 through 20 November 2020 -- 166140en_US
dc.description.abstractThe heart is the most critical organ for the sustainability of life. Arrhythmia is any irregularity of heart rate that causes an abnormality in your heart rhythm. Clinical analysis of Electrocardiogram (ECG) signals is not enough to quickly identify abnormalities in the heart rhythm. This paper proposes a deep learning method for the accurate detection of abnormal and normal heartbeats based on 2-D Convolutional Neural Network (CNN) architecture. Two channels of ECG signals were obtained from the MIT-BIH arrhythmia dataset. Each ECG signal is segmented into heartbeats, and each heartbeat is transformed into a 2-D grayscale heartbeat image as an input for CNN structure. Due to the success of image recognition, CNN architecture is utilized for binary classification of the 2-D image matrix. In this study, the effect of different CNN architectures is compared based on the classification rate. The accuracies of training and test data are found as 100.00% and 99.10%, respectively for the best CNN model. Experimental results demonstrate that CNN with ECG image representation yields the highest success rate for the binary classification of ECG beats compared to the traditional machine learning methods, and one-dimensional deep learning classifiers. © 2020 IEEE.en_US
dc.description.sponsorship2018-TYL-FEBE-0063, 2019-ONAP-MUMF-0001en_US
dc.description.sponsorshipThis work was supported by the Scientific Research Projects Coordination Unit, Izmir Katip Celebi University. Project numbers: 2018-TYL-FEBE-0063 and 2019-ONAP–MUMF-0001.en_US
dc.description.sponsorshipThis work was supported by the Scientific Research Projects Coordination Unit, Izmir Katip Celebi University. Project numbers: 2018-TYL-FEBE-0063 and 2019-ONAP-MUMF-0001.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2020 - Tip Teknolojileri Kongresi - 2020 Medical Technologies Congress, TIPTEKNO 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject2-D ECG Imagesen_US
dc.subjectAbnormal Heartbeat Detectionen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectDeep Learningen_US
dc.subjectElectrocardiogramen_US
dc.subjectHeartbeat Classificationen_US
dc.subjectBiomedical engineeringen_US
dc.subjectConvolutionen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectDiseasesen_US
dc.subjectElectrocardiographyen_US
dc.subjectHearten_US
dc.subjectImage recognitionen_US
dc.subjectLearning systemsen_US
dc.subjectNetwork architectureen_US
dc.subjectBinary classificationen_US
dc.subjectClassification ratesen_US
dc.subjectClinical analysisen_US
dc.subjectECG beat detectionen_US
dc.subjectElectrocardiogram signalen_US
dc.subjectImage representationsen_US
dc.subjectLearning classifiersen_US
dc.subjectMachine learning methodsen_US
dc.subjectBiomedical signal processingen_US
dc.titleAbnormal ECG Beat Detection Based on Convolutional Neural Networksen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO50054.2020.9299260-
dc.identifier.scopus2-s2.0-85099476948en_US
dc.authorscopusid57206479576-
dc.authorscopusid57195223021-
dc.authorscopusid35617283100-
dc.authorscopusid55201862300-
dc.identifier.wosWOS:000659419900046en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2725.pdf
  Restricted Access
312.16 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

15
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 20, 2024

Page view(s)

94
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.