Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3640
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDegirmenci M.-
dc.contributor.authorAkan A.-
dc.date.accessioned2023-06-16T15:01:51Z-
dc.date.available2023-06-16T15:01:51Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO50054.2020.9299262-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3640-
dc.description2020 Medical Technologies Congress, TIPTEKNO 2020 -- 19 November 2020 through 20 November 2020 -- 166140en_US
dc.description.abstractEpilepsy is a type of neurological disorder that causes abnormal brain activities and creates epileptic seizures. Traditionally epileptic seizure prediction is realized with a visual examination of Electroencephalogram (EEG) signals. But this technique needs a long time EEG monitoring. So, the automatic epileptic seizures prediction schemes become a requirement at this point. This study proposes a method to classify epileptic seizures and normal EEG data by utilizing the Intrinsic Time-scale Decomposition (ITD)-based features. The dataset has been supplied from the database of the Epileptology Department of Bonn University. It contains 5 data groups A, B, C, D, E. The study aims to classify healthy and epileptic data, so data of groups A and E are used to perform evaluations of proposed methods. The EEG data are decomposed into Proper Rotation Components (PRCs) by ITD. The feature extraction methods are applied to the first five PRCs of each EEG data from healthy and epileptic individuals. These features are classified using K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Naive Bayes, Support Vector Machine (SVM) and Logistic Regression classifiers. The results demonstrated that the epileptic data is differentiated from normal data by applying the nonlinear ITD with outstanding classification performance. © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2020 - Tip Teknolojileri Kongresi - 2020 Medical Technologies Congress, TIPTEKNO 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEEGen_US
dc.subjectElectroencephalogramen_US
dc.subjectEpileptic Seizuresen_US
dc.subjectIntrinsic Time-Scale Decompositionen_US
dc.subjectBiomedical engineeringen_US
dc.subjectBrainen_US
dc.subjectDiscriminant analysisen_US
dc.subjectLogistic regressionen_US
dc.subjectNearest neighbor searchen_US
dc.subjectNeurophysiologyen_US
dc.subjectSupport vector machinesen_US
dc.subjectSupport vector regressionen_US
dc.subjectClassification performanceen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEpileptic seizure predictionen_US
dc.subjectFeature extraction methodsen_US
dc.subjectIntrinsic time-scale decompositionsen_US
dc.subjectK nearest neighbor (KNN)en_US
dc.subjectLinear discriminant analysisen_US
dc.subjectLogistic regression classifieren_US
dc.subjectElectroencephalographyen_US
dc.titleEEG based Epileptic Seizures Detection using Intrinsic Time-Scale Decompositionen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO50054.2020.9299262-
dc.identifier.scopus2-s2.0-85099443003en_US
dc.authorscopusid57206472130-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2727.pdf
  Restricted Access
134.17 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 20, 2024

Page view(s)

88
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.