Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3641
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzdemir M.A.-
dc.contributor.authorKisa D.H.-
dc.contributor.authorGuren O.-
dc.contributor.authorOnan A.-
dc.contributor.authorAkan A.-
dc.date.accessioned2023-06-16T15:01:51Z-
dc.date.available2023-06-16T15:01:51Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO50054.2020.9299264-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3641-
dc.description2020 Medical Technologies Congress, TIPTEKNO 2020 -- 19 November 2020 through 20 November 2020 -- 166140en_US
dc.description.abstractThe Electromyography (EMG) signal is a nonstationary bio-signal based on the measurement of the electrical activity of the muscles. EMG based recognition systems play an important role in many fields such as diagnosis of neuromuscular diseases, human-computer interactions, console games, sign language detection, virtual reality applications, and amputee device controls. In this study, a novel approach based on deep learning has been proposed to improve the accuracy rate in the prediction of hand movements. Firstly, 4-channel surface EMG (sEMG) signals have been measured while simulating 7 different hand gestures (Extension, Flexion, Open Hand, Punch, Radial Deviation, Rest, and Ulnar Deviation) from 30 participants. The obtained sEMG signals have been segmented into sections where each movement was found. Then, spectrogram images of the segmented sEMG signals have been created by means of ShortTime Fourier Transform (STFT). The created colored spectrogram images have trained with 50-layer Convolutional Neural Network (CNN) based on Residual Networks (ResNet) architecture. Owing to the proposed method, test accuracy of 99.59% and F1 Score of 99.57% have achieved for 7 different hand gesture classifications. © 2020 IEEE.en_US
dc.description.sponsorship1919B011903429; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKen_US
dc.description.sponsorshipThis work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Grant No. 1919B011903429.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2020 - Tip Teknolojileri Kongresi - 2020 Medical Technologies Congress, TIPTEKNO 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCNNen_US
dc.subjectDeep Learningen_US
dc.subjectEMGen_US
dc.subjectHand Gestureen_US
dc.subjectResNeten_US
dc.subjectSpectrogram STFTen_US
dc.subjectBiomedical engineeringen_US
dc.subjectBiomedical signal processingen_US
dc.subjectComputer gamesen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDiagnosisen_US
dc.subjectGesture recognitionen_US
dc.subjectHuman computer interactionen_US
dc.subjectNeurophysiologyen_US
dc.subjectSpectrographsen_US
dc.subjectAccuracy rateen_US
dc.subjectDevice controlen_US
dc.subjectElectrical activitiesen_US
dc.subjectHand-gesture recognitionen_US
dc.subjectNeuromuscular diseaseen_US
dc.subjectNonstationaryen_US
dc.subjectRecognition systemsen_US
dc.subjectShort time Fourier transformsen_US
dc.subjectDeep learningen_US
dc.titleEMG based Hand Gesture Recognition using Deep Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO50054.2020.9299264-
dc.identifier.scopus2-s2.0-85099461588en_US
dc.authorscopusid57206479576-
dc.authorscopusid56364720900-
dc.authorscopusid55201862300-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:000659419900104en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2728.pdf
  Restricted Access
772.01 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

38
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

29
checked on Nov 20, 2024

Page view(s)

112
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.