Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3642
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKisa D.H.-
dc.contributor.authorOzdemir M.A.-
dc.contributor.authorGuren O.-
dc.contributor.authorAkan A.-
dc.date.accessioned2023-06-16T15:01:51Z-
dc.date.available2023-06-16T15:01:51Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO50054.2020.9299282-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3642-
dc.description2020 Medical Technologies Congress, TIPTEKNO 2020 -- 19 November 2020 through 20 November 2020 -- 166140en_US
dc.description.abstractComputer systems working with artificial intelligence can recognize movements and gestures to be used for many purposes. In order to perform recognition, the electrical activity of the muscles can be utilized which is represented by electromyography (EMG) and EMG is not a stationary biological signal. EMG based movement recognition systems have an important place in distinct areas like in human-computer interactions, virtual reality, prosthesis, and hand exoskeletons. In this study, a new approach based on deep learning (DL) and Empirical Mode Decomposition (EMD) is proposed to improve the accuracy rate for recognition of hand movements in its application areas. Firstly, 4-channel surface EMG (sEMG) signals were measured while simulating 7 different hand gestures, which are extension, flexion, ulnar deviation, radial deviation, punch, open hand, and rest, from 30 subjects. After that, noiseless signals were procured utilizing filters as a result of preprocessing. Then, pre-processed signals were subjected to segmentation. Thereafter, the EMD process was applied to each segmented signal and Intrinsic Mode Functions (IMFs) were obtained. The IMFs time-series which are some kind of screen images of the first 3 IMFs have been recorded. For classification, IMFs images have given as inputs and have trained to the 101layer Convolution Neural Network (CNN) based on Residual Networks (ResNet) architecture, which is a DL model. © 2020 IEEE.en_US
dc.description.sponsorship1919B011903429; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKen_US
dc.description.sponsorshipThis work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) under Grant No. 1919B011903429.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2020 - Tip Teknolojileri Kongresi - 2020 Medical Technologies Congress, TIPTEKNO 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConvolutional Neural Network (CNN)en_US
dc.subjectDeep Learningen_US
dc.subjectElectromyography (EMG)en_US
dc.subjectEmpirical Mode Decomposition (EMD)en_US
dc.subjectHand Gestureen_US
dc.subjectIntrinsic Mode Function (IMF)en_US
dc.subjectResNeten_US
dc.subjectBiomedical engineeringen_US
dc.subjectBiomedical signal processingen_US
dc.subjectExoskeleton (Robotics)en_US
dc.subjectHuman computer interactionen_US
dc.subjectMotion estimationen_US
dc.subjectPalmprint recognitionen_US
dc.subjectTime seriesen_US
dc.subjectBiological signalsen_US
dc.subjectConvolution neural networken_US
dc.subjectElectrical activitiesen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectHand exoskeletonen_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectITS applicationsen_US
dc.subjectMovement recognitionen_US
dc.subjectDeep learningen_US
dc.titleEMG based Hand Gesture Classification using Empirical Mode Decomposition Time-Series and Deep Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO50054.2020.9299282-
dc.identifier.scopus2-s2.0-85099454728en_US
dc.authorscopusid57221554803-
dc.authorscopusid56364720900-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:000659419900066en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2729.pdf
  Restricted Access
479 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

15
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

12
checked on Nov 20, 2024

Page view(s)

90
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.