Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3644
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cura O.K. | - |
dc.contributor.author | Akan A. | - |
dc.date.accessioned | 2023-06-16T15:01:51Z | - |
dc.date.available | 2023-06-16T15:01:51Z | - |
dc.date.issued | 2020 | - |
dc.identifier.isbn | 9.78173E+12 | - |
dc.identifier.uri | https://doi.org/10.1109/TIPTEKNO50054.2020.9299317 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3644 | - |
dc.description | 2020 Medical Technologies Congress, TIPTEKNO 2020 -- 19 November 2020 through 20 November 2020 -- 166140 | en_US |
dc.description.abstract | Epilepsy is one of the neurological diseases that occur incidences worldwide. The electroencephalography (EEG) recording method is the most frequently used clinical practice in the diagnosis and monitoring of epilepsy. Many computer-aided analysis methods have been developed in the literature to facilitate the analysis of long-term EEG signals. In the proposed study, the patient-based seizure detection approach is proposed using a high-resolution time-frequency (TF) representation named Synchrosqueezed Transform (SST) method. The SST of two different data sets called the IKCU data set and CHB-MIT data set are obtained, and Higher-order joint TF(HOJ-TF) based and Gray-level co-occurrence matrix (GLCM) based features are calculated using these SSTs. Using some machine learning methods such as Decision Tree (DT), k-Nearest Neighbor (kNN), and Logistic Regression (LR), classification processes are conducted. High patient-based seizure detection success is achieved for both the IKCU data set (94.25%) and the CHB-MIT data set (95.15%). © 2020 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | TIPTEKNO 2020 - Tip Teknolojileri Kongresi - 2020 Medical Technologies Congress, TIPTEKNO 2020 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | EEG | en_US |
dc.subject | patient-based seizure detection | en_US |
dc.subject | SST | en_US |
dc.subject | Time-Frequency Analysis | en_US |
dc.subject | Biomedical engineering | en_US |
dc.subject | Computer aided analysis | en_US |
dc.subject | Decision trees | en_US |
dc.subject | Electrophysiology | en_US |
dc.subject | Logistic regression | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Nearest neighbor search | en_US |
dc.subject | Neurology | en_US |
dc.subject | Classification process | en_US |
dc.subject | Clinical practices | en_US |
dc.subject | Gray level co occurrence matrix(GLCM) | en_US |
dc.subject | K nearest neighbor (KNN) | en_US |
dc.subject | Machine learning methods | en_US |
dc.subject | Neurological disease | en_US |
dc.subject | Seizure detection | en_US |
dc.subject | Synchrosqueezing | en_US |
dc.subject | Electroencephalography | en_US |
dc.title | Epileptic EEG Classification Using Synchrosqueezing Transform and Machine Learning | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/TIPTEKNO50054.2020.9299317 | - |
dc.identifier.scopus | 2-s2.0-85099432568 | en_US |
dc.authorscopusid | 57195223021 | - |
dc.identifier.wos | WOS:000659419900098 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.06. Electrical and Electronics Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2731.pdf Restricted Access | 922.24 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 20, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 20, 2024
Page view(s)
104
checked on Nov 18, 2024
Download(s)
6
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.