Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3644
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura O.K.-
dc.contributor.authorAkan A.-
dc.date.accessioned2023-06-16T15:01:51Z-
dc.date.available2023-06-16T15:01:51Z-
dc.date.issued2020-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO50054.2020.9299317-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3644-
dc.description2020 Medical Technologies Congress, TIPTEKNO 2020 -- 19 November 2020 through 20 November 2020 -- 166140en_US
dc.description.abstractEpilepsy is one of the neurological diseases that occur incidences worldwide. The electroencephalography (EEG) recording method is the most frequently used clinical practice in the diagnosis and monitoring of epilepsy. Many computer-aided analysis methods have been developed in the literature to facilitate the analysis of long-term EEG signals. In the proposed study, the patient-based seizure detection approach is proposed using a high-resolution time-frequency (TF) representation named Synchrosqueezed Transform (SST) method. The SST of two different data sets called the IKCU data set and CHB-MIT data set are obtained, and Higher-order joint TF(HOJ-TF) based and Gray-level co-occurrence matrix (GLCM) based features are calculated using these SSTs. Using some machine learning methods such as Decision Tree (DT), k-Nearest Neighbor (kNN), and Logistic Regression (LR), classification processes are conducted. High patient-based seizure detection success is achieved for both the IKCU data set (94.25%) and the CHB-MIT data set (95.15%). © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2020 - Tip Teknolojileri Kongresi - 2020 Medical Technologies Congress, TIPTEKNO 2020en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEEGen_US
dc.subjectpatient-based seizure detectionen_US
dc.subjectSSTen_US
dc.subjectTime-Frequency Analysisen_US
dc.subjectBiomedical engineeringen_US
dc.subjectComputer aided analysisen_US
dc.subjectDecision treesen_US
dc.subjectElectrophysiologyen_US
dc.subjectLogistic regressionen_US
dc.subjectMachine learningen_US
dc.subjectNearest neighbor searchen_US
dc.subjectNeurologyen_US
dc.subjectClassification processen_US
dc.subjectClinical practicesen_US
dc.subjectGray level co occurrence matrix(GLCM)en_US
dc.subjectK nearest neighbor (KNN)en_US
dc.subjectMachine learning methodsen_US
dc.subjectNeurological diseaseen_US
dc.subjectSeizure detectionen_US
dc.subjectSynchrosqueezingen_US
dc.subjectElectroencephalographyen_US
dc.titleEpileptic EEG Classification Using Synchrosqueezing Transform and Machine Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO50054.2020.9299317-
dc.identifier.scopus2-s2.0-85099432568en_US
dc.authorscopusid57195223021-
dc.identifier.wosWOS:000659419900098en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2731.pdf
  Restricted Access
922.24 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

104
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.