Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3650
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUzunbayır, Serhat-
dc.date.accessioned2023-06-16T15:01:52Z-
dc.date.available2023-06-16T15:01:52Z-
dc.date.issued2018-
dc.identifier.isbn9.78154E+12-
dc.identifier.urihttps://doi.org/10.1109/UBMK.2018.8566446-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3650-
dc.description3rd International Conference on Computer Science and Engineering, UBMK 2018 -- 20 September 2018 through 23 September 2018 -- 143560en_US
dc.description.abstractAuctions are a very popular way of allocating multiple items. There are three different auction types, such as sequential auctions, parallel auctions, and combinatorial auctions. This study focuses on combinatorial auctions. Combinatorial auctions allow bidders to bid on a collection of items rather than a single item. This results in more efficient allocations than traditional auctions. The problem is determining the winners of all bids in a way that maximizes the auctioneer's profit. Some instances of the problem may be solvable in polynomial time with a few items and bidders. However, with excessive numbers of items and bidders, the problem becomes NP-complete. In this paper, a genetic algorithm is proposed and compared with a random search algorithm on various sized datasets. The results for experiments indicate that the proposed genetic algorithm performs better than random search as the size of the problem increases. © 2018 IEEE.en_US
dc.description.sponsorshipAustralian Research Council, ARC: LP0347156en_US
dc.description.sponsorshipAcknowledgement. This project is supported by Australia Research Council Linkage Grant (LP0347156).en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofUBMK 2018 - 3rd International Conference on Computer Science and Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCombinatorial Auctionsen_US
dc.subjectGenetic Algorithmsen_US
dc.subjectMeta-heuristicsen_US
dc.subjectRandom Searchen_US
dc.subjectWinner Determination Problemen_US
dc.subjectCombinatorial mathematicsen_US
dc.subjectCommerceen_US
dc.subjectGenetic algorithmsen_US
dc.subjectPolynomial approximationen_US
dc.subjectCombinatorial auctionen_US
dc.subjectEfficient allocationsen_US
dc.subjectMeta heuristicsen_US
dc.subjectPolynomial-timeen_US
dc.subjectRandom search algorithmen_US
dc.subjectRandom searchesen_US
dc.subjectSequential auctionsen_US
dc.subjectWinner determination problemen_US
dc.subjectProblem solvingen_US
dc.titleA Genetic Algorithm for the Winner Determination Problem in Combinatorial Auctionsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/UBMK.2018.8566446-
dc.identifier.scopus2-s2.0-85060609801en_US
dc.authorscopusid57205586949-
dc.identifier.startpage127en_US
dc.identifier.endpage132en_US
dc.identifier.wosWOS:000459847400024en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2737.pdf
  Restricted Access
104.15 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

Page view(s)

140
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.