Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3658
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCan B.-
dc.contributor.authorHeavey C.-
dc.contributor.authorKabak K.E.-
dc.date.accessioned2023-06-16T15:01:53Z-
dc.date.available2023-06-16T15:01:53Z-
dc.date.issued2015-
dc.identifier.isbn9.78148E+12-
dc.identifier.issn0891-7736-
dc.identifier.urihttps://doi.org/10.1109/WSC.2014.7020084-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3658-
dc.description2014 Winter Simulation Conference, WSC 2014 -- 7 December 2014 through 10 December 2014 -- 112842en_US
dc.description.abstractThis paper proposes using data analytic tools to generate operating curves in complex systems. Operating curves are productivity tools that benchmark factory performance based on key metrics, cycle time and throughput. We apply a machine learning approach on the flow time data gathered from a manufacturing system to derive predictive functions for these metrics. To perform this, we investigate incorporation of detailed shop-floor data typically available from manufacturing execution systems. These functions are in explicit mathematical form and have the ability to predict the operating points and operating curves. Simulation of a real system from semiconductor manufacturing is used to demonstrate the proposed approach. © 2014 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - Winter Simulation Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBenchmarkingen_US
dc.subjectComputer aided software engineeringen_US
dc.subjectFunctionsen_US
dc.subjectSemiconductor device manufactureen_US
dc.subjectData analytic toolsen_US
dc.subjectFactory performanceen_US
dc.subjectMachine learning approachesen_US
dc.subjectManufacturing Execution Systemen_US
dc.subjectMathematical formsen_US
dc.subjectPredictive functionen_US
dc.subjectProductivity toolsen_US
dc.subjectSemiconductor manufacturingen_US
dc.subjectMachine learningen_US
dc.titleGenerating operating curves in complex systems using machine learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/WSC.2014.7020084-
dc.identifier.scopus2-s2.0-84940542411en_US
dc.authorscopusid26031341800-
dc.authorscopusid24587842500-
dc.identifier.volume2015-Januaryen_US
dc.identifier.startpage2404en_US
dc.identifier.endpage2413en_US
dc.identifier.wosWOS:000389248203010en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2743.pdf
  Restricted Access
333.7 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 27, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 27, 2024

Page view(s)

66
checked on Nov 25, 2024

Download(s)

6
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.