Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3661
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhasemi A.-
dc.contributor.authorKabak K.E.-
dc.contributor.authorHeavey C.-
dc.date.accessioned2023-06-16T15:01:54Z-
dc.date.available2023-06-16T15:01:54Z-
dc.date.issued2022-
dc.identifier.isbn9.79835E+12-
dc.identifier.issn0891-7736-
dc.identifier.urihttps://doi.org/10.1109/WSC57314.2022.10015436-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3661-
dc.description2022 Winter Simulation Conference, WSC 2022 -- 11 December 2022 through 14 December 2022 -- 186263en_US
dc.description.abstractIndustry 4.0 has placed an emphasis on real-time decision making in the execution of systems, such as semiconductor manufacturing. This article will evaluate a scheduling methodology called Evolutionary Learning Based Simulation Optimization (ELBSO) using data generated by a Manufacturing Execution System (MES) for scheduling a Stochastic Job Shop Scheduling Problem (SJSSP). ELBSO is embedded within Ordinal Optimization (OO), where in the first phase it uses a meta model, which previously was trained by a Discrete Event Simulation model of a SJSSP. The meta model used within ELBSO uses Genetic Programming (GP)-based Machine Learning (ML). Therefore, instead of using the DES model to train and test the meta model, this article uses historical data from a front-end fab to train and test. The results were statistically evaluated for the quality of the fit generated by the meta-model. © 2022 IEEE.en_US
dc.description.sponsorshipScience Foundation Ireland, SFI: SFI 16/RC/3918; European Regional Development Fund, ERDFen_US
dc.description.sponsorshipThis publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI 16/RC/3918, co-funded by the European Regional Development Fund.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - Winter Simulation Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDecision makingen_US
dc.subjectDiscrete event simulationen_US
dc.subjectGenetic algorithmsen_US
dc.subjectGenetic programmingen_US
dc.subjectJob shop schedulingen_US
dc.subjectProduction controlen_US
dc.subjectQuality controlen_US
dc.subjectReal time systemsen_US
dc.subjectSemiconductor device manufactureen_US
dc.subjectStochastic systemsen_US
dc.subjectEvolutionary Learningen_US
dc.subjectMachine-learningen_US
dc.subjectMeta modelen_US
dc.subjectMetamodelingen_US
dc.subjectProduction Schedulingen_US
dc.subjectReal time decision-makingen_US
dc.subjectReal-time applicationen_US
dc.subjectReal-time decision makingen_US
dc.subjectSimulation optimizationen_US
dc.subjectStochastic job shop scheduling problemen_US
dc.subjectMachine learningen_US
dc.titleDemonstration of the Feasibility of Real Time Application of Machine Learning to Production Schedulingen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/WSC57314.2022.10015436-
dc.identifier.scopus2-s2.0-85147456582en_US
dc.authorscopusid57190121746-
dc.authorscopusid6603835699-
dc.identifier.volume2022-Decemberen_US
dc.identifier.startpage3406en_US
dc.identifier.endpage3417en_US
dc.identifier.wosWOS:000991872903038en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2747.pdf
  Restricted Access
1.1 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 27, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 27, 2024

Page view(s)

68
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.