Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBinli M.K.-
dc.contributor.authorCan Demiryilmaz B.-
dc.contributor.authorEkim P.O.-
dc.contributor.authorYeganli F.-
dc.date.accessioned2023-06-16T15:03:05Z-
dc.date.available2023-06-16T15:03:05Z-
dc.date.issued2019-
dc.identifier.isbn9.78605E+12-
dc.identifier.urihttps://doi.org/10.23919/ELECO47770.2019.8990524-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3725-
dc.description11th International Conference on Electrical and Electronics Engineering, ELECO 2019 -- 28 November 2019 through 30 November 2019 -- 157784en_US
dc.description.abstractThis work employs a new method of feature selection and classification of image objects by combining previous studies in literature of feature selection and classification of images. In the new algorithm, instead of sliding a window on the image and scaling the window by applying normalized cuts and image segmentation algorithms, information related to the position of objects is considered. Accordingly, the scaling of searching image window process is been exceeded. For this purpose, the obtained segments of image features extracted by employing Histogram Oriented Gradient (HOG) descriptor, which clears the images from the curse of dimensions. These extracted features optimized by applying Genetic Algorithm (GA) method, to detect faces and compared with HOG feature results. The main objective of this work is to improve the accuracy of Support Vector Machine (SVM) classifier in detail description applications. © 2019 Chamber of Turkish Electrical Engineers.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofELECO 2019 - 11th International Conference on Electrical and Electronics Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassification (of information)en_US
dc.subjectFace recognitionen_US
dc.subjectFeature extractionen_US
dc.subjectGenetic algorithmsen_US
dc.subjectImage classificationen_US
dc.subjectSupport vector machinesen_US
dc.subjectDescriptorsen_US
dc.subjectFeature selection and classificationen_US
dc.subjectImage featuresen_US
dc.subjectImage objectsen_US
dc.subjectImage segmentation algorithmen_US
dc.subjectImage windowen_US
dc.subjectNormalized cutsen_US
dc.subjectOriented gradientsen_US
dc.subjectImage segmentationen_US
dc.titleFace Detection via HOG and GA Feature Selection with Support Vector Machinesen_US
dc.typeConference Objecten_US
dc.identifier.doi10.23919/ELECO47770.2019.8990524-
dc.identifier.scopus2-s2.0-85080899566en_US
dc.authorscopusid57204193794-
dc.authorscopusid36608964400-
dc.authorscopusid56247299800-
dc.identifier.startpage610en_US
dc.identifier.endpage613en_US
dc.identifier.wosWOS:000552654100120en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2805.pdf
  Restricted Access
671.98 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

70
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.