Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3729
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNakmouche M.F.-
dc.contributor.authorAllam A.M.M.A.-
dc.contributor.authorFawzy D.E.-
dc.contributor.authorBing Lin D.-
dc.contributor.authorAbo Sree M.F.-
dc.date.accessioned2023-06-16T15:03:06Z-
dc.date.available2023-06-16T15:03:06Z-
dc.date.issued2021-
dc.identifier.isbn9.78883E+12-
dc.identifier.urihttps://doi.org/10.23919/EuCAP51087.2021.9411213-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3729-
dc.description15th European Conference on Antennas and Propagation, EuCAP 2021 -- 22 March 2021 through 26 March 2021 -- 168667en_US
dc.description.abstractThe proposed work conducts a new approach for modeling a dual band monopole antenna design using DGS assisted by ANN. In the aim of efficient dual band antenna design with gain and optimal impedance matching, the Artificial Neural Networks technique (ANN) is used for the development process. This work presents a modeling for H-slotted Defected Ground Structure (DGS) based dual band antenna using ANN for 5G Sub-6 GHz applications. The designed antenna operates at 3.76 GHz and 6.1 GHz. The antenna gain is 2.18 dB and 2.75 dB at both frequencies, respectively. Firstly, a simulation is performed using CST EM simulator, then the predicted results in term of return losses and frequencies are fed into the ANN model. Secondly using a hybrid algorithm based on both feed-forward back-propagation and Levenberg-Marquart (LM) learning algorithm, the optimal position of the H-Slotted DGS in terms of 5G Sub-6 GHz band is extracted. Finally, the experimental validation is conducted and compared with the simulation results, a good agreement is obtained. © 2021 EurAAP.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof15th European Conference on Antennas and Propagation, EuCAP 2021en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject5G applicationen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectDefected Ground Structureen_US
dc.subjectDual-banden_US
dc.subjectFinite Element Methodsen_US
dc.subjectMonopole Antennaen_US
dc.subjectSub-6 GHzen_US
dc.subjectAntenna feedersen_US
dc.subjectBackpropagationen_US
dc.subjectDefected ground structuresen_US
dc.subjectMicrowave antennasen_US
dc.subjectMonopole antennasen_US
dc.subjectNeural networksen_US
dc.subjectSlot antennasen_US
dc.subjectDevelopment processen_US
dc.subjectDual band antennasen_US
dc.subjectDual-band monopole antennasen_US
dc.subjectExperimental validationsen_US
dc.subjectFeed-forward back propagationen_US
dc.subjectHybrid algorithmsen_US
dc.subjectNew approachesen_US
dc.subjectOptimal positionen_US
dc.subject5G mobile communication systemsen_US
dc.titleDevelopment of H-Slotted DGS Based Dual Band Antenna Using ANN for 5G Applicationsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.23919/EuCAP51087.2021.9411213-
dc.identifier.scopus2-s2.0-85105468726en_US
dc.authorscopusid57206657916-
dc.authorscopusid23011278600-
dc.authorscopusid57223290020-
dc.authorscopusid57215833796-
dc.identifier.wosWOS:000672699800324en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2809.pdf
  Restricted Access
580.26 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

30
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 20, 2024

Page view(s)

80
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.