Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3731
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura O.K.-
dc.contributor.authorYilmaz G.C.-
dc.contributor.authorTüre H.S.-
dc.contributor.authorAkan A.-
dc.date.accessioned2023-06-16T15:03:06Z-
dc.date.available2023-06-16T15:03:06Z-
dc.date.issued2021-
dc.identifier.isbn9.78908E+12-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://doi.org/10.23919/EUSIPCO54536.2021.9615988-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3731-
dc.description29th European Signal Processing Conference, EUSIPCO 2021 -- 23 August 2021 through 27 August 2021 -- 175283en_US
dc.description.abstractPsychogenic non-epileptic seizures (PNES) are mostly associated with psychogenic factors, where the symptoms are often confused with epilepsy. Since electroencephalography (EEG) signals maintain their normal state in PNES cases, it is not possible to diagnose using the EEG recordings alone. Therefore, long-term video EEG records and detailed patient history are needed for reliable diagnosis and correct treatment. However, the video EEG recording method is more expensive than the classical EEG. Therefore, it has great importance to distinguish PNES signals from normal epileptic seizure (ES) signals using only the EEG recordings. In the proposed study, using the Synchrosqueezed Transform (SST) that gives high-resolution time-frequency representations (TFR), inter-PNES, PNES, and Epileptic seizure EEG classification is introduced. 17 joint TF features are calculated from the TFRs, and various classifiers are used for classification processes. Classification problems with three classes (inter-PNES, PNES, and ES) and two classes (inter-PNES and PNES) are considered. Experimental results indicated that both three-class and two-class classification approaches achieved encouraging validation performances (three-class problem: 95.8% ACC, 86.9% SEN, 91.4% PRE, and 8.6% FDR; two-class problem: 96.4% ACC, 96.8% SEN, 97.3% PRE, and FDR lower than 10%). © 2021 European Signal Processing Conference. All rights reserved.en_US
dc.description.sponsorship2019-TDR-FEBE-0005en_US
dc.description.sponsorship*This study was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit. Project number 2019-TDR-FEBE-0005.en_US
dc.language.isoenen_US
dc.publisherEuropean Signal Processing Conference, EUSIPCOen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEEGen_US
dc.subjectPNESen_US
dc.subjectSSTen_US
dc.subjectTime-frequency analysisen_US
dc.subjectBiomedical signal processingen_US
dc.subjectClassification (of information)en_US
dc.subjectElectroencephalographyen_US
dc.subjectElectrophysiologyen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectPatient treatmenten_US
dc.subjectEpileptic seizuresen_US
dc.subjectHigh resolutionen_US
dc.subjectNormal stateen_US
dc.subjectPatient historyen_US
dc.subjectPsychogenic non-epileptic seizureen_US
dc.subjectResolution timeen_US
dc.subjectSynchrosqueezed transformen_US
dc.subjectSynchrosqueezingen_US
dc.subjectTime-frequency Analysisen_US
dc.subjectTime-frequency representationsen_US
dc.subjectNeurophysiologyen_US
dc.titleClassification of Psychogenic Non-epileptic Seizures Using Synchrosqueezing Transform of EEG Signalsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.23919/EUSIPCO54536.2021.9615988-
dc.identifier.scopus2-s2.0-85123210204en_US
dc.authorscopusid57195223021-
dc.authorscopusid16644499400-
dc.authorscopusid35617283100-
dc.identifier.volume2021-Augusten_US
dc.identifier.startpage1172en_US
dc.identifier.endpage1176en_US
dc.identifier.wosWOS:000764066600233en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2811.pdf
  Restricted Access
488.62 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 20, 2024

Page view(s)

88
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.