Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3732
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura O.K.-
dc.contributor.authorOzdemir M.A.-
dc.contributor.authorAkan A.-
dc.date.accessioned2023-06-16T15:03:06Z-
dc.date.available2023-06-16T15:03:06Z-
dc.date.issued2021-
dc.identifier.isbn9.78908E+12-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://doi.org/10.23919/Eusipco47968.2020.9287347-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3732-
dc.description28th European Signal Processing Conference, EUSIPCO 2020 -- 24 August 2020 through 28 August 2020 -- 165944en_US
dc.description.abstractEpilepsy is a neurological disease that is very common worldwide. In the literature, patient's electroencephalography (EEG) signals are frequently used for an epilepsy diagnosis. However, the success of epileptic examination procedures from quantitative EEG signals is limited. In this paper, a high-resolution time-frequency (TF) representation called Synchrosqueezed Transform (SST) is used to classify epileptic EEG signals. The SST matrices of seizure and pre-seizure EEG data of 16 epilepsy patients are calculated. Two approaches based on machine learning and deep learning are proposed to classify pre-seizure and seizure signals. In the machine learning-based approach, the various features like higher-order joint moments are calculated and these features are classified by Support Vector Machine (SVM), k-Nearest Neighbor (kNN) and Naive Bayes (NB) classifiers. In the deep learning-based approach, the SST matrix was recorded as an image and a Convolutional Neural Network (CNN)-based architecture was used to classify these images. Simulation results demonstrate that both approaches achieved promising validation accuracy rates. While the maximum (90.2%) validation accuracy is achieved for the machine learning-based approach, (90.3%) validation accuracy is achieved for the deep learning-based approach. © 2021 European Signal Processing Conference, EUSIPCO. All rights reserved.en_US
dc.description.sponsorship2019-TDR-FEBE-0005en_US
dc.description.sponsorshipThis study was supported by Izmir Katip Celebi University Scientific Research Projects Coordination Unit. Project number: 2019-TDR-FEBE-0005.en_US
dc.language.isoenen_US
dc.publisherEuropean Signal Processing Conference, EUSIPCOen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCNNen_US
dc.subjectEEGen_US
dc.subjectSSTen_US
dc.subjectSVMen_US
dc.subjectTime-Frequency Analysisen_US
dc.subjectBarium compoundsen_US
dc.subjectBiomedical signal processingen_US
dc.subjectConvolutional neural networksen_US
dc.subjectElectroencephalographyen_US
dc.subjectElectrophysiologyen_US
dc.subjectLearning systemsen_US
dc.subjectNearest neighbor searchen_US
dc.subjectNeurologyen_US
dc.subjectSupport vector machinesen_US
dc.subjectAccuracy rateen_US
dc.subjectEpileptic EEGen_US
dc.subjectHigh resolutionen_US
dc.subjectK nearest neighbor (KNN)en_US
dc.subjectLearning techniquesen_US
dc.subjectLearning-based approachen_US
dc.subjectNeurological diseaseen_US
dc.subjectSynchrosqueezingen_US
dc.subjectDeep learningen_US
dc.titleEpileptic EEG classification using synchrosqueezing transform with machine and deep learning techniquesen_US
dc.typeConference Objecten_US
dc.identifier.doi10.23919/Eusipco47968.2020.9287347-
dc.identifier.scopus2-s2.0-85099281954en_US
dc.authorscopusid57195223021-
dc.authorscopusid35617283100-
dc.identifier.volume2021-Januaryen_US
dc.identifier.startpage1210en_US
dc.identifier.endpage1214en_US
dc.identifier.wosWOS:000632622300243en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2812.pdf
  Restricted Access
754.92 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

68
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.