Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3745
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNakmouche M.F.-
dc.contributor.authorAllam A.M.M.A.-
dc.contributor.authorFawzy D.E.-
dc.contributor.authorLin D.-B.-
dc.date.accessioned2023-06-16T15:03:08Z-
dc.date.available2023-06-16T15:03:08Z-
dc.date.issued2021-
dc.identifier.issn1937-8726-
dc.identifier.urihttps://doi.org/10.2528/PIERM21083103-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3745-
dc.description.abstract—This work is devoted to the development of a high gain Frequency Selective Surface (FSS) reflector backed monopole antenna using Machine Learning (ML) techniques for 5G applications. It analyzes and solves the complexity of the determination of the optimum position of the FSS reflector and the ground dimension of the monopole in this composite antenna structure since there are no solid and standard formulations for the computation of these two parameters. ML modelling is involved in the development process for the sake of gain enhancement. It is applied to get the optimum position of the FSS reflector layer and the ground dimension of the monopole antenna. The proposed antenna structure is 50 mm × 50 mm, implemented on a Rogers 5880 substrate (thickness = 1.6 mm). Two different patch antenna structures, with and without FSS, are developed and considered in the current work. The antenna performance in terms of operating frequency, return loss, and gain is analysed using the finite element methods. The design is optimized for a targeting frequency band operating at 6 GHz (5.53 GHz to 6.36 GHz), which is suitable for 5G Sub-6 GHz applications. The obtained results show that the integration of the FSS layer below the antenna structure provides a simple and efficient method to obtain a low-profile and high-gain antenna. Finally, the proposed design is fabricated and measured, and a good agreement between the simulated and measured results is obtained. A comparison with similar studies in the literature is presented and shows that the current design is more compact in size, and the obtained radiation efficiency and gain are higher than other designs. © 2021, Electromagnetics Academy. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElectromagnetics Academyen_US
dc.relation.ispartofProgress In Electromagnetics Research Men_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject5G mobile communication systemsen_US
dc.subjectAntenna reflectorsen_US
dc.subjectFrequency selective surfacesen_US
dc.subjectMachine learningen_US
dc.subjectMicrostrip antennasen_US
dc.subjectMicrowave antennasen_US
dc.subjectMonopole antennasen_US
dc.subjectSlot antennasen_US
dc.subject'currenten_US
dc.subjectAntenna structuresen_US
dc.subjectDevelopment processen_US
dc.subjectFrequency-selective surfacesen_US
dc.subjectGain frequenciesen_US
dc.subjectHigh gainen_US
dc.subjectMachine learning modelsen_US
dc.subjectMachine learning techniquesen_US
dc.subjectOptimum positionen_US
dc.subjectTwo parameteren_US
dc.subjectReflectionen_US
dc.titleDevelopment of a high gain FSS reflector backed monopole antenna using machine learning for 5G applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.2528/PIERM21083103-
dc.identifier.scopus2-s2.0-85120868192en_US
dc.authorscopusid57206657916-
dc.authorscopusid23011278600-
dc.authorscopusid7403692642-
dc.identifier.volume105en_US
dc.identifier.startpage183en_US
dc.identifier.endpage194en_US
dc.identifier.wosWOS:000720119500017en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ3-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
2825.pdf1.93 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

21
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 20, 2024

Page view(s)

296
checked on Nov 18, 2024

Download(s)

252
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.