Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3746
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKocatürk F.-
dc.contributor.authorToparli M.B.-
dc.contributor.authorTanrıkulu B.-
dc.contributor.authorYurtdaş S.-
dc.contributor.authorZeren D.-
dc.contributor.authorKılıçaslan C.-
dc.date.accessioned2023-06-16T15:03:08Z-
dc.date.available2023-06-16T15:03:08Z-
dc.date.issued2021-
dc.identifier.isbn9.78287E+12-
dc.identifier.urihttps://doi.org/10.25518/esaform21.4140-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3746-
dc.description24th International ESAFORM Conference on Material Forming, ESAFORM 2021 -- 14 April 2021 through 16 April 2021 -- 173376en_US
dc.description.abstractA limited number of material models or flow curves are available in commercial finite element softwares at varying temperature and strain rate ranges for plasticity analysis. To obtain more realistic finite element results, flow curves at wide temperature and strain rate ranges are required. For this purpose, a material model for a medium carbon alloy steel material which is used for fastener production was prepared. Firstly, flow curves of the material were obtained at 4 temperatures (20, 100, 200, 400 °C) and 3 strain rates (1, 10, 50 s-1). Then, experimental data was used to construct an artificial neural networks model (ANN) for the material. 75% of the experimental data was used to train the model and the rest was employed for validation and verification. ANN model used in flow curve prediction was developed using the scikit-learn library on Python. Temperature, strain rate and strain were employed as input parameters and flow stress as output parameter in ANN model. In order to increase the accuracy of the ANN model, the number of hidden layers and the number of neurons were also optimized by mean squared error approach. As a result of studies, an ANN-based material model that can be used for wide range of temperature and strain rate values were developed based on the experimental data. © ESAFORM 2021 - 24th Inter. Conf. on Mat. Forming. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPoPuPS (University of LiFge Library)en_US
dc.relation.ispartofESAFORM 2021 - 24th International Conference on Material Formingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectFlow curve predictionen_US
dc.subjectMedium carbon alloy steelen_US
dc.subjectPythonen_US
dc.subjectAlloy steelen_US
dc.subjectForecastingen_US
dc.subjectHigh level languagesen_US
dc.subjectMean square erroren_US
dc.subjectNeural networksen_US
dc.subjectStrain rateen_US
dc.subjectArtificial neural network modelingen_US
dc.subjectCarbon/alloy steelsen_US
dc.subjectCold forgingen_US
dc.subjectCurve predictionen_US
dc.subjectFlow curve predictionen_US
dc.subjectFlow curvesen_US
dc.subjectForging steelen_US
dc.subjectMaterial modelingen_US
dc.subjectMedium carbon alloy steelen_US
dc.subjectStrain-ratesen_US
dc.subjectPythonen_US
dc.titleFlow curve prediction of cold forging steel by artificial neural network modelen_US
dc.typeConference Objecten_US
dc.identifier.doi10.25518/esaform21.4140-
dc.identifier.scopus2-s2.0-85119376779en_US
dc.authorscopusid56252519800-
dc.authorscopusid57208409764-
dc.authorscopusid57208400620-
dc.authorscopusid55846045000-
dc.authorscopusid55236629400-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2826.pdf986.85 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 20, 2024

Page view(s)

78
checked on Nov 25, 2024

Download(s)

46
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.