Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3760
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBessiere C.-
dc.contributor.authorHebrard E.-
dc.contributor.authorHnich B.-
dc.contributor.authorKiziltan Z.-
dc.contributor.authorWalsh T.-
dc.date.accessioned2023-06-16T15:03:10Z-
dc.date.available2023-06-16T15:03:10Z-
dc.date.issued2008-
dc.identifier.isbn9.78159E+11-
dc.identifier.issn0922-6389-
dc.identifier.urihttps://doi.org/10.3233/978-1-58603-891-5-475-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3760-
dc.description18th European Conference on Artificial Intelligence, ECAI 2008 -- 21 July 2008 through 25 July 2008 -- 139245en_US
dc.description.abstractWe study the CARDPATH constraint. This ensures a given constraint holds a number of times down a sequence of variables. We show that SLIDE, a special case of CARDPATH where the slid constraint must hold always, can be used to encode a wide range of sliding sequence constraints including CARDPATH itself. We consider how to propagate SLIDE and provide a complete propagator for CARDPATH. Since propagation is NP-hard in general, we identify special cases where propagation takes polynomial time. Our experiments demonstrate that using SLIDE to encode global constraints can be as efficient and effective as specialised propagators. © 2008 The authors and IOS Press. All rights reserved.en_US
dc.description.sponsorshipSOBAG-108K027; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKen_US
dc.description.sponsorship1 LIRMM (CNRS / U. Montpellier), France, email: bessiere@lirmm.fr. Sup-ported by the ANR project ANR-06-BLAN-0383-02. 2 4C, UCC, Ireland, email: ehebrard@4c.ucc.ie. 3 Izmir Uni. of Economics, Turkey, email: brahim.hnich@ieu.edu.tr. Sup-ported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027. 4 CS Department, Uni. of Bologna, Italy, email: zeynep@cs.unibo.it. 5 NICTA and UNSW, Sydney, Australia, email: toby.walsh@nicta.com.au. Funded by the Australian Government’s Department of Broadband, Com-munications and the Digital Economy, and the ARC.en_US
dc.language.isoenen_US
dc.publisherIOS Pressen_US
dc.relation.ispartofFrontiers in Artificial Intelligence and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPolynomial approximationen_US
dc.subjectGlobal constraintsen_US
dc.subjectNP-harden_US
dc.subjectPolynomial-timeen_US
dc.subjectEncoding (symbols)en_US
dc.titleSLIDE: A useful special case of the CARDPATH constrainten_US
dc.typeConference Objecten_US
dc.identifier.doi10.3233/978-1-58603-891-5-475-
dc.identifier.scopus2-s2.0-85052003302en_US
dc.authorscopusid6701546627-
dc.authorscopusid6602458958-
dc.authorscopusid55962417500-
dc.authorscopusid55806690200-
dc.identifier.volume178en_US
dc.identifier.startpage475en_US
dc.identifier.endpage479en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2840.pdf
  Restricted Access
230.39 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

31
checked on Nov 20, 2024

Page view(s)

40
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.