Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3831
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rossi R. | - |
dc.contributor.author | Hnich B. | - |
dc.contributor.author | Tarim S.A. | - |
dc.contributor.author | Prestwich S. | - |
dc.date.accessioned | 2023-06-16T15:04:31Z | - |
dc.date.available | 2023-06-16T15:04:31Z | - |
dc.date.issued | 2011 | - |
dc.identifier.isbn | 9.78158E+12 | - |
dc.identifier.issn | 1045-0823 | - |
dc.identifier.uri | https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-362 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3831 | - |
dc.description | IJCAI;ACIA;AEPIA;Artificial Intelligence;Ministerio de Ciencia e Innovacion | en_US |
dc.description | 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011 -- 16 July 2011 through 22 July 2011 -- Barcelona, Catalonia -- 97874 | en_US |
dc.description.abstract | We discuss a novel approach for dealing with single-stage stochastic constraint satisfaction problems (SCSPs) that include random variables over a continuous or large discrete support. Our approach is based on two novel tools: sampled SCSPs and (?, ?)-solutions. Instead of explicitly enumerating a very large or infinite set of future scenarios, we employ statistical estimation to determine if a given assignment is consistent for a SCSP. As in statistical estimation, the quality of our estimate is determined via confidence interval analysis. In contrast to existing approaches based on sampling, we provide likelihood guarantees for the quality of the solutions found. Our approach can be used in concert with existing strategies for solving SCSPs. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | IJCAI International Joint Conference on Artificial Intelligence | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Confidence interval analysis | en_US |
dc.subject | Discrete support | en_US |
dc.subject | Single stage | en_US |
dc.subject | Statistical estimation | en_US |
dc.subject | Stochastic constraints | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Estimation | en_US |
dc.title | Finding (?, ?)-solutions via sampled SCSPs | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.5591/978-1-57735-516-8/IJCAI11-362 | - |
dc.identifier.scopus | 2-s2.0-84881071873 | en_US |
dc.authorscopusid | 35563636800 | - |
dc.authorscopusid | 6506794189 | - |
dc.authorscopusid | 7004234709 | - |
dc.identifier.startpage | 2172 | en_US |
dc.identifier.endpage | 2177 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | reserved | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
2914.pdf Restricted Access | 672.56 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
5
checked on Nov 20, 2024
Page view(s)
62
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.