Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3940
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAbazari N.-
dc.contributor.authorSager I.-
dc.date.accessioned2023-06-16T15:06:27Z-
dc.date.available2023-06-16T15:06:27Z-
dc.date.issued2010-
dc.identifier.issn2010-376X-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3940-
dc.description.abstractIn this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimizes the integral of the Lorentz inner product of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions.en_US
dc.language.isoenen_US
dc.relation.ispartofWorld Academy of Science, Engineering and Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDarboux vectoren_US
dc.subjectHamiltonian vector fielden_US
dc.subjectLie groupen_US
dc.subjectLorentz metricen_US
dc.subjectMaximum principleen_US
dc.subjectOptimal controlen_US
dc.subjectRigid body motionen_US
dc.subjectDarboux vectoren_US
dc.subjectHamiltonian vector fielden_US
dc.subjectLie groupen_US
dc.subjectLorentzen_US
dc.subjectOptimal controlsen_US
dc.subjectRigid-body motionen_US
dc.subjectElastic energyen_US
dc.subjectFrenet frameen_US
dc.subjectHamiltonian systemsen_US
dc.subjectHamiltonian vector fieldsen_US
dc.subjectInner producten_US
dc.subjectIntegrable Hamiltonian systemen_US
dc.subjectMinkowski spaceen_US
dc.subjectMotion planning problemsen_US
dc.subjectOptimal control problemen_US
dc.subjectRigid body systemsen_US
dc.subjectSmooth trajectoriesen_US
dc.subjectControlen_US
dc.subjectCurve fittingen_US
dc.subjectMaximum principleen_US
dc.subjectMotion planningen_US
dc.subjectOptimizationen_US
dc.subjectRigid structuresen_US
dc.subjectVectorsen_US
dc.subjectLie groupsen_US
dc.subjectOptimal control systemsen_US
dc.subjectHamiltoniansen_US
dc.titlePlanning rigid body motions and optimal control problem on lie group SO(2, 1)en_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-78651556247en_US
dc.authorscopusid36805441400-
dc.identifier.volume64en_US
dc.identifier.startpage448en_US
dc.identifier.endpage452en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2970.pdf
  Restricted Access
124.46 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

56
checked on Nov 25, 2024

Download(s)

6
checked on Nov 25, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.