Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3959
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDüzenli T.-
dc.contributor.authorÖzkurt N.-
dc.date.accessioned2023-06-16T15:06:30Z-
dc.date.available2023-06-16T15:06:30Z-
dc.date.issued2010-
dc.identifier.isbn9.78142E+12-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3959-
dc.description2010 7th National Conference on Electrical, Electronics and Computer Engineering, ELECO 2010 -- 2 December 2010 through 5 December 2010 -- Bursa -- 83834en_US
dc.description.abstractIn this study, performance of wavelet transform based features for the speech / music discrimination task has been investigated. In order to extract wavelet domain features, discrete and complex wavelet transforms have been used. The performance of the proposed feature set has been compared with a feature set constructed from the most common time, frequency and cepstral domain features used in speech/music discrimination such as number of zero crossings, spectral centroid, spectral flux and mel cepstral coefficients. In order to measure the performances of the feature sets for the speech/music discrimination, artificial neural networks have been used as a classification tool. The principal component analysis has been applied to eliminate the correlated features before classification stage. Considering the number of vanishing moments and orthogonality, the best performance is obtained with Daubechies8 wavelet among the other members of the Daubechies family. According to the results the proposed feature set outperforms the traditional ones.en_US
dc.language.isotren_US
dc.relation.ispartof2010 National Conference on Electrical, Electronics and Computer Engineering, ELECO 2010en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectCepstral coefficientsen_US
dc.subjectCepstral domainen_US
dc.subjectClassification toolen_US
dc.subjectComplex wavelet transformsen_US
dc.subjectDaubechiesen_US
dc.subjectFeature setsen_US
dc.subjectNumber of zerosen_US
dc.subjectOrthogonalityen_US
dc.subjectSpectral fluxen_US
dc.subjectSpeech/music discriminationen_US
dc.subjectVanishing momenten_US
dc.subjectWavelet domain featuresen_US
dc.subjectWavelet-based Featureen_US
dc.subjectElectrical engineeringen_US
dc.subjectFeature extractionen_US
dc.subjectNeural networksen_US
dc.subjectPrincipal component analysisen_US
dc.subjectSpeech recognitionen_US
dc.subjectWavelet analysisen_US
dc.subjectDiscrete wavelet transformsen_US
dc.titleComparison of wavelet based feature extraction methods for speech/music discrimination [Conference Object]en_US
dc.title.alternativeKonuşma/müzik ayriştirmada dalgacik tabanli öznitelik çikarim yöntemlerinin karşilaştirilmasi [Conference Object]en_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-79951611535en_US
dc.authorscopusid36975195100-
dc.identifier.startpage617en_US
dc.identifier.endpage621en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextreserved-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2986.pdf
  Restricted Access
123.51 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

Page view(s)

66
checked on Nov 25, 2024

Download(s)

6
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.