Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/3963
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBessiere C.-
dc.contributor.authorHebrard E.-
dc.contributor.authorHnich B.-
dc.contributor.authorKiziltan Z.-
dc.contributor.authorQuimper C.-G.-
dc.contributor.authorWalsh T.-
dc.date.accessioned2023-06-16T15:06:30Z-
dc.date.available2023-06-16T15:06:30Z-
dc.date.issued2008-
dc.identifier.isbn9.78158E+12-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/3963-
dc.descriptionCornell Univ. Intelligent Information Systems Inst.;Toyota Motor Engineering and Manufacturing North America Inc.;ACM/SIGART;Boeingen_US
dc.description23rd AAAI Conference on Artificial Intelligence and the 20th Innovative Applications of Artificial Intelligence Conference, AAAI-08/IAAI-08 -- 13 July 2008 through 17 July 2008 -- Chicago, IL -- 74777en_US
dc.description.abstractWe argue that parameterized complexity is a useful tool with which to study global constraints. In particular, we show that many global constraints which are intractable to propagate completely have natural parameters which make them fixed-parameter tractable and which are easy to compute. This tractability tends either to be the result of a simple dynamic program or of a decomposition which has a strong backdoor of bounded size. This strong backdoor is often a cycle cutset. We also show that parameterized complexity can be used to study other aspects of constraint programming like symmetry breaking. For instance, we prove that value symmetry is fixed-parameter tractable to break in the number of symmetries. Finally, we argue that parameterized complexity can be used to derive results about the approximability of constraint propagation. Copyright © 2008, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofProceedings of the National Conference on Artificial Intelligenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectComputer programmingen_US
dc.subjectConstraint theoryen_US
dc.subjectPacket networksen_US
dc.subjectApproximabilityen_US
dc.subjectBounded sizesen_US
dc.subjectConstraint programmingsen_US
dc.subjectConstraint propagationsen_US
dc.subjectDynamic programsen_US
dc.subjectGlobal constraintsen_US
dc.subjectParameterized complexitiesen_US
dc.subjectBionicsen_US
dc.titleThe parameterized complexity of global constraintsen_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-57749193700en_US
dc.authorscopusid6701546627-
dc.authorscopusid6602458958-
dc.authorscopusid55962417500-
dc.authorscopusid6508328101-
dc.authorscopusid55806690200-
dc.identifier.volume1en_US
dc.identifier.startpage235en_US
dc.identifier.endpage240en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
2989.pdf
  Restricted Access
310.31 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

22
checked on Nov 20, 2024

Page view(s)

72
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.