Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/3975
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ordin B. | - |
dc.contributor.author | Uylaş N. | - |
dc.date.accessioned | 2023-06-16T15:06:32Z | - |
dc.date.available | 2023-06-16T15:06:32Z | - |
dc.date.issued | 2010 | - |
dc.identifier.isbn | 9.78996E+12 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/3975 | - |
dc.description | 24th Mini EURO Conference on Continuous Optimization and Information-Based Technologies in the Financial Sector, MEC EurOPT 2010 -- 23 June 2010 through 26 June 2010 -- Izmir -- 106702 | en_US |
dc.description.abstract | In this paper we have proposed a semi-supervised algorithm based on quasisecant optimization method for solving data classification problems. The algorithm computes hyperplane(s) to separate two sets with respect to some tolerance. An error function is formulated and an algorithm for its minimization is expressed. We present results of numerical experiments using several UCI test data sets and compare the proposed algorithm with two supervised data classification algorithm (linear separability, max-min separability) and two support vector machine solvers (LIBSVM and SVM-light). © Izmir University of Economics, Turkey, 2010. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Vilnius Gediminas Technical University | en_US |
dc.relation.ispartof | 24th Mini EURO Conference on Continuous Optimization and Information-Based Technologies in the Financial Sector, MEC EurOPT 2010 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Nonsmooth optimization | en_US |
dc.subject | Quasisecant method | en_US |
dc.subject | Semi-supervised data classification | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Optimization | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Data classification | en_US |
dc.subject | Data classification problems | en_US |
dc.subject | Linear separability | en_US |
dc.subject | Nonsmooth optimization | en_US |
dc.subject | Numerical experiments | en_US |
dc.subject | Optimization method | en_US |
dc.subject | Quasisecant method | en_US |
dc.subject | Semi-supervised algorithm | en_US |
dc.subject | Classification (of information) | en_US |
dc.title | Linear separability: Quasisecant method and application to semi-supervised data classification | en_US |
dc.type | Conference Object | en_US |
dc.identifier.scopus | 2-s2.0-84905454918 | en_US |
dc.authorscopusid | 35107735000 | - |
dc.identifier.startpage | 264 | en_US |
dc.identifier.endpage | 269 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | N/A | - |
item.openairetype | Conference Object | - |
item.cerifentitytype | Publications | - |
item.grantfulltext | reserved | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
3001.pdf Restricted Access | 507.83 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Page view(s)
84
checked on Nov 25, 2024
Download(s)
2
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.