Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4618
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÜnlütürk, Mehmet Süleyman-
dc.contributor.authorOguz K.-
dc.contributor.authorAtay C.-
dc.date.accessioned2023-06-16T18:52:12Z-
dc.date.available2023-06-16T18:52:12Z-
dc.date.issued2009-
dc.identifier.issn1790-5022-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4618-
dc.description.abstractSpeech and emotion recognition improve the quality of human computer interaction and allow easier to use interfaces for every level of user in software applications. In this study, we have developed two different neural networks called emotion recognition neural network (ERNN) and Gram-Charlier emotion recognition neural network (GERNN) to classify the voice signals for emotion recognition. The ERNN has 128 input nodes, 20 hidden neurons, and three summing output nodes. A set of 97920 training sets is used to train the ERNN. A new set of 24480 testing sets is utilized to test the ERNN performance. The samples tested for voice recognition are acquired from the movies " Anger Management" and " Pick of Destiny" . ERNN achieves an average recognition performance of 100%. This high level of recognition suggests that the ERNN is a promising method for emotion recognition in computer applications. Furthermore, the GERNN has four input nodes, 20 hidden neurons, and three output nodes. The GERNN achieves an average recognition performance of 33%. This shows us that we cannot use Gram-Charlier coefficients to discriminate emotion signals. In addition, Hinton diagrams were utilized to display the optimality of ERNN weights.en_US
dc.language.isoenen_US
dc.relation.ispartofWSEAS Transactions on Signal Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBack propagation learning algorithmen_US
dc.subjectBayes optimal decision ruleen_US
dc.subjectEmotionen_US
dc.subjectFast-fourier transform (FFT)en_US
dc.subjectNeural networken_US
dc.subjectPower spectrumen_US
dc.subjectSpeechen_US
dc.subjectBack propagation learning algorithmen_US
dc.subjectBayes optimal decision ruleen_US
dc.subjectEmotionen_US
dc.subjectEmotion recognitionen_US
dc.subjectFast-fourier transform (FFT)en_US
dc.subjectHidden neuronsen_US
dc.subjectInput nodeen_US
dc.subjectOptimalityen_US
dc.subjectRecognition performanceen_US
dc.subjectSoftware applicationsen_US
dc.subjectSpeech signalsen_US
dc.subjectTesting setsen_US
dc.subjectTraining setsen_US
dc.subjectVoice recognitionen_US
dc.subjectVoice signalsen_US
dc.subjectBackpropagationen_US
dc.subjectBackpropagation algorithmsen_US
dc.subjectComputer applicationsen_US
dc.subjectFace recognitionen_US
dc.subjectFast Fourier transformsen_US
dc.subjectHuman computer interactionen_US
dc.subjectInterfaces (computer)en_US
dc.subjectLearning algorithmsen_US
dc.subjectLearning systemsen_US
dc.subjectNeural networksen_US
dc.subjectNeuronsen_US
dc.subjectPower spectrumen_US
dc.subjectSpeech recognitionen_US
dc.titleA comparison of neural networks for real-time emotion recognition from speech signalsen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-70349640175en_US
dc.authorscopusid6508114835-
dc.authorscopusid57211227021-
dc.identifier.volume5en_US
dc.identifier.issue3en_US
dc.identifier.startpage116en_US
dc.identifier.endpage125en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
crisitem.author.dept05.05. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
3659.pdf
  Restricted Access
930.29 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

Page view(s)

78
checked on Nov 18, 2024

Download(s)

6
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.