Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4640
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUhlmann S.-
dc.contributor.authorKiranyaz S.-
dc.contributor.authorİnce, Türker-
dc.contributor.authorGabbouj, Moncef-
dc.date.accessioned2023-06-16T18:52:15Z-
dc.date.available2023-06-16T18:52:15Z-
dc.date.issued2011-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4640-
dc.description19th European Signal Processing Conference, EUSIPCO 2011 -- 29 August 2011 through 2 September 2011 -- Barcelona -- 91103en_US
dc.description.abstractPolarimetric SAR image classification has been an active research field where several features and classifiers have been proposed in the past. Using numerous features can be a desirable option so as to achieve a better discrimination over certain classes, yet key questions such as how to avoid "Curse of Dimensionality" and how to combine them in the most effective way still remains unanswered. In this paper, we investigate SAR image classification using a large set of features, where the focus is particularly drawn on the extension of image processing features e.g. texture, edge and color. We propose a dedicated application of the Collective Network of (evolutionary) Binary Classifiers (CNBC) framework to address these problems with the aim of achieving high feature scalability. We furthermore tested several SAR and image processing feature constellations over three well-known SAR image classifiers and make comparative evaluations with CNBC. Experimental results over the full polarimetric AIRSAR San Francisco Bay and Flevoland images show that additional image processing features are able to improve SAR image classification accuracy and moreover, the CNBC proves useful and can scale well especially whenever high number of features and classes are encountered. © 2011 EURASIP.en_US
dc.language.isoenen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBinary classifiersen_US
dc.subjectComparative evaluationsen_US
dc.subjectCurse of dimensionalityen_US
dc.subjectExtended featuresen_US
dc.subjectPolarimetric SARen_US
dc.subjectResearch fieldsen_US
dc.subjectSan Francisco Bayen_US
dc.subjectSAR image classificationsen_US
dc.subjectSAR imageryen_US
dc.subjectSAR Imagesen_US
dc.subjectClassification (of information)en_US
dc.subjectImage classificationen_US
dc.subjectImage processingen_US
dc.subjectPolarimetersen_US
dc.subjectSynthetic aperture radaren_US
dc.titleSAR imagery classification in extended feature space by Collective Network of Binary Classifiersen_US
dc.typeConference Objecten_US
dc.identifier.scopus2-s2.0-84863736364en_US
dc.authorscopusid35106079900-
dc.authorscopusid56259806600-
dc.authorscopusid7005332419-
dc.identifier.startpage1160en_US
dc.identifier.endpage1164en_US
dc.identifier.wosWOS:000377963100235en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
3672.pdf
  Restricted Access
1.08 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

236
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.