Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4661
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİşler, Yalçın-
dc.contributor.authorÖzturk, Uğur-
dc.contributor.authorSayılgan, Ebru-
dc.date.accessioned2023-06-19T20:56:09Z-
dc.date.available2023-06-19T20:56:09Z-
dc.date.issued2023-
dc.identifier.issn0256-2499-
dc.identifier.issn0973-7677-
dc.identifier.urihttps://doi.org/10.1007/s12046-023-02105-3-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4661-
dc.description.abstractThe model complexity is strictly connected to both the sample size and the number of features in a conventional pattern recognition study. Although there are some sample reduction methods in the literature, they cannot give the highest classifier performance or are not able to achieve the minimum number of samples in general. In this study, we offered a new sample reduction method, named Backward Iterative Elimination. To show its efficiency, we classified congestive heart failure (CHF) patients and healthy subjects from heart rate variability (HRV) features using the k-nearest neighbors (kNN) classifier. We extracted 59 HRV features (time and frequency domain measurements through power spectral density estimates of different transformation methods in addition to nonlinear measures calculated from Poincare plot, sample entropy, symbolic dynamics, and detrended fluctuation analysis) from databases provided by the Massachusetts Institute of Technology and Boston's Beth Israel Hospital. The extracted features were classified using kNN with various odd k values from 1 to 19. The proposed method was compared to three well-known reduction methods: Backward elimination, Gaussian elimination, and Genetic algorithm. The proposed system yielded the highest accuracy values for each k value. While the genetic algorithm achieved the maximum sample size reduction in general, the proposed method showed better sample size reduction performance than other backward elimination methods. The method resulted in a classifier accuracy of 87.95% with 33 samples only. In this case, the algorithm run time reduces to 9.1411 ms, which is 12.1578 ms using all samples. In conclusion, the Backward Iterative Elimination gives the highest classifier performances with an appropriate ratio in sample size reduction so that it can be utilized in pattern recognition studies as a good alternative.en_US
dc.language.isoenen_US
dc.publisherSpringer Indiaen_US
dc.relation.ispartofSadhana-Academy Proceedings in Engineering Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectrocardiogram (ECG)en_US
dc.subjectcongestive heart failure (CHF)en_US
dc.subjectdata reductionen_US
dc.subjectgenetic algorithmen_US
dc.subjectk-nearest neighbors (kNN)en_US
dc.subjectParoxysmal Atrial-Fibrillationen_US
dc.subjectSelection Methoden_US
dc.subjectRate-Variabilityen_US
dc.subjectHrv Indexesen_US
dc.subjectClassificationen_US
dc.subjectPerformanceen_US
dc.titleA New Sample Reduction Method for Decreasing the Running Time of the K-Nearest Neighbors Algorithm To Diagnose Patients With Congestive Heart Failure: Backward Iterative Eliminationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12046-023-02105-3-
dc.identifier.scopus2-s2.0-85150985638-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridIsler, Yalcin/0000-0002-2150-4756-
dc.authoridSayilgan, Ebru/0000-0001-5059-3201-
dc.authorwosidIsler, Yalcin/A-7399-2019-
dc.authorwosidSayilgan, Ebru/AAB-3993-2021-
dc.identifier.volume48en_US
dc.identifier.issue2en_US
dc.identifier.wosWOS:000959462700001-
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ3-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextreserved-
crisitem.author.dept05.11. Mechatronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
3688.pdf
  Restricted Access
557.33 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Jan 1, 2025

WEB OF SCIENCETM
Citations

2
checked on Jan 1, 2025

Page view(s)

102
checked on Dec 30, 2024

Download(s)

6
checked on Dec 30, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.