Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4668
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYeşilkaya, Bartu-
dc.contributor.authorSayilgan, Ebru-
dc.contributor.authorYuce, Yilmaz Kemal-
dc.contributor.authorPerc, Matjaz-
dc.contributor.authorIsler, Yalcin-
dc.date.accessioned2023-06-19T20:56:10Z-
dc.date.available2023-06-19T20:56:10Z-
dc.date.issued2023-
dc.identifier.issn1877-7503-
dc.identifier.issn1877-7511-
dc.identifier.urihttps://doi.org/10.1016/j.jocs.2023.102000-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4668-
dc.description.abstractSteady-state visually evoked potentials (SSVEP) are stochastic and nonstationary bioelectric signals. Because of these properties, it is difficult to achieve high classification accuracy, especially when many considered features lead to a complex structure. We therefore propose a manifold learning framework to decrease the number of features and to classify SSVEP data by comparing lower dimensional matrices with well-known machine learning algorithms. We use the AVI-SSVEP Dataset, which includes stimuli at seven different frequencies and 15360 samples per person. The SSVEP features are extracted from relevant and distinctive frequency -domain, time-domain, and time-frequency domain properties, creating a total of 55 feature vectors. We then analyze and compare five divergent manifold learning methods with respect to their performance on nine different machine-learning algorithms. Among all considered manifold learning methods, we show that the Principal Component Analysis has the best classifier performance with an average of 22 components. Moreover, the Naive Bayes classifier with the Principal Component Analysis achieves the maximum accuracy of 50.0%-80.95% for a 7-class classification problem. Our research thus shows that the proposed analytical framework can significantly improve the decoding accuracy of 7-class SSVEP problems, and that it exhibits notable robustness and efficiency for small group datasets.en_US
dc.description.sponsorshipSlovenian Research Agency (Javna agencija za raziskovalno dejavnost Republike Slovenije) [P1-0403, J1-2457]en_US
dc.description.sponsorshipMatja? Perc was supported by the Slovenian Research Agency (Javna agencija za raziskovalno dejavnost Republike Slovenije) (Grant Nos. P1-0403 and J1-2457) .en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Computational Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectManifold learningen_US
dc.subjectBrain-computer interfaceen_US
dc.subjectSteady-state visual evoked potentialen_US
dc.subjectPrincipal component analysisen_US
dc.subjectFeature reductionen_US
dc.titlePrincipal Component Analysis and Manifold Learning Techniques for the Design of Brain-Computer Interfaces Based on Steady-State Visually Evoked Potentialsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jocs.2023.102000-
dc.identifier.scopus2-s2.0-85151475497-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridSayilgan, Ebru/0000-0001-5059-3201-
dc.authoridPerc, Matjaz/0000-0002-3087-541X-
dc.authoridIsler, Yalcin/0000-0002-2150-4756-
dc.authorwosidSayilgan, Ebru/AAB-3993-2021-
dc.authorwosidPerc, Matjaz/A-5148-2009-
dc.authorwosidIsler, Yalcin/A-7399-2019-
dc.identifier.volume68en_US
dc.identifier.wosWOS:000965027200001-
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextreserved-
crisitem.author.dept05.11. Mechatronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
3695.pdf
  Restricted Access
817.37 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Jan 1, 2025

WEB OF SCIENCETM
Citations

7
checked on Jan 1, 2025

Page view(s)

156
checked on Dec 30, 2024

Download(s)

6
checked on Dec 30, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.