Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4688
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDobrucalı, Birce-
dc.contributor.authorÖzdağoğlu, Güzin-
dc.contributor.authorİlter, Burcu-
dc.date.accessioned2023-06-19T20:56:13Z-
dc.date.available2023-06-19T20:56:13Z-
dc.date.issued2023-
dc.identifier.issn0263-4503-
dc.identifier.issn1758-8049-
dc.identifier.urihttps://doi.org/10.1108/MIP-05-2022-0188-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4688-
dc.description.abstractPurposeThis study aims to both identify content-based and interaction-based online consumer complaint types and predict complaint types according to the complaint magnitude rooted in complainants' personality traits, emotion, Twitter usage activity, as well as complaint's sentiment polarity, and interaction rate.Design/methodology/approachIn total, 297,000 complaint tweets were collected from Twitter, featuring over 220,000 consumer profiles and over 24 million user tweets. The obtained data were analyzed via two-step machine learning approach.FindingsThis study proposes a set of content and profile features that can be employed for determining complaint types and reveals the relationship between content features, profile features and online complaint type.Originality/valueThis study proposes a novel model for identifying types of online complaints, offering a set of content and profile features that can be used for predicting complaint type, and therefore introduces a flexible approach for enhancing online complaint management.en_US
dc.language.isoenen_US
dc.publisherEmerald Group Publishing Ltden_US
dc.relation.ispartofMarketing Intelligence & Planningen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTwitteren_US
dc.subjectSocial CRMen_US
dc.subjectMachine learningen_US
dc.subjectText analyticsen_US
dc.subjectComplaint handlingen_US
dc.subjectWord-Of-Mouthen_US
dc.subjectBehavioren_US
dc.subjectExperienceen_US
dc.subjectEmotionsen_US
dc.subjectFirmsen_US
dc.subjectModelen_US
dc.titleOnline complaint handling: a text analytics-based classification frameworken_US
dc.typeArticleen_US
dc.identifier.doi10.1108/MIP-05-2022-0188-
dc.identifier.scopus2-s2.0-85158081124en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid58237380000-
dc.authorscopusid35218139100-
dc.authorscopusid55054404600-
dc.identifier.wosWOS:000976808000001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ3-
item.grantfulltextembargo_20300101-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept03.04. International Trade and Finance-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
4688.pdf
  Until 2030-01-01
619.91 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 20, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 20, 2024

Page view(s)

90
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.