Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4726
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSyatirah, M.Z.-
dc.contributor.authorFatanah, M.S.-
dc.contributor.authorJihan, M.Z.N.-
dc.contributor.authorZulfakar, M.M.-
dc.contributor.authorŞeniz, E.-
dc.contributor.authorFarhah, M.-
dc.date.accessioned2023-06-19T20:56:19Z-
dc.date.available2023-06-19T20:56:19Z-
dc.date.issued2022-
dc.identifier.isbn9781665494694-
dc.identifier.urihttps://doi.org/10.1109/IECBES54088.2022.10079420-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4726-
dc.description7th IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2022 - Proceedings -- 7 December 2022 through 9 December 2022 -- 187642en_US
dc.description.abstractSeveral studies have been venturing into developing a model for controlling blood glucose among diabetes patients. It is because diabetes mellitus is a severe and common chronic disease affecting almost all populations in many countries. This study collected retrospective clinical data from five patients receiving insulin therapy in the ICU of HUSM. The auto-regressive with exogenous (ARX) and auto-regressive moving average with exogenous (ARMAX) model structure techniques were used to generate a model converter that best describes the glucose and insulin relationship of the subject. The simulation of ARX were started from model order (1,1,1) to model order (5,5,10) while, for ARMAX the simulation was started from model order (1,1,1,1) until model order (5,5,5,10). The three best model orders from ARX and ARMAX models were chosen. The best model fits for ARX and ARMAX were compared to identify the best model order in predicting the glucose-insulin system. The finding indicated that the ARX model recorded the best model fit for all patients in the 5th model order. Meanwhile, the ARMAX model recorded patients with different medical backgrounds and produced a different model order. Besides, the ARMAX model was considered the best option for most of the patients in this study due to the highest model fit, time-delay and lowest percentage of peak error. A more extensive data set may be required to ensure the structure of the model precisely describe the glucose-insulin interaction of the patient.Clinical Relevance- This study establishes a prediction model of the glucose-insulin system that can assist clinicians in providing appropriate insulin value and consequently reduce the incidence of hypoglycemia and hyperglycemia. © 2022 IEEE.en_US
dc.description.sponsorshipUniversiti Sains Malaysia, USM: 8014034en_US
dc.description.sponsorship*Research supported by RUI (Research University Individual) grant (Project No.: 8014034).en_US
dc.description.sponsorshipACKNOWLEDGEMENT The authors would like to acknowledge the financial support provided by Universiti Sains Malaysia. This study is part of the project granted by the RUI (Research University Individual) grant (Project No.: 8014034). All authors would like express gratitude to all ICU staff of HUSM, USM for the support.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof7th IEEE-EMBS Conference on Biomedical Engineering and Sciences, IECBES 2022 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDelay control systemsen_US
dc.subjectGlucoseen_US
dc.subjectIntensive care unitsen_US
dc.subjectPatient treatmenten_US
dc.subjectAutoregressive/moving averagesen_US
dc.subjectBest modelen_US
dc.subjectBlood glucoseen_US
dc.subjectChronic diseaseen_US
dc.subjectDiabetes mellitusen_US
dc.subjectDiabetes patientsen_US
dc.subjectGlycemic controlen_US
dc.subjectModel fiten_US
dc.subjectModel orderen_US
dc.subjectPredictive modelsen_US
dc.subjectInsulinen_US
dc.titlePredictive Modeling using ARX and ARMAX Models for Glycemic Control in Intensive Care Unit Patientsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IECBES54088.2022.10079420-
dc.identifier.scopus2-s2.0-85152424221en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid58182015800-
dc.authorscopusid58182570500-
dc.authorscopusid58182570600-
dc.authorscopusid58182295200-
dc.authorscopusid58181487900-
dc.authorscopusid58181215500-
dc.identifier.startpage189en_US
dc.identifier.endpage194en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.grantfulltextembargo_20300101-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
4726.pdf
  Until 2030-01-01
508.6 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

72
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.