Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4886
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAka Uymaz, Hande-
dc.contributor.authorKumova Metin, Senem-
dc.date.accessioned2023-10-27T06:43:32Z-
dc.date.available2023-10-27T06:43:32Z-
dc.date.issued2023-
dc.identifier.issn1520-9202-
dc.identifier.issn1941-045X-
dc.identifier.urihttps://doi.org/10.1109/MITP.2023.3278029-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4886-
dc.description.abstractText-based emotion detection is an important and expanding research area due to the increasing accessibility of written data via the Internet and social media. Vector space models, such as semantic and contextual methods, are frequently used in many domains in natural language processing. Currently, to improve performance in emotion/sentiment detection studies, a new research area has emerged, which involves adding extra emotion information (emotion enrichment) to these models. Furthermore, as emotion depends on multiple parameters, the success of enrichment may vary based on different languages. In this study, we applied two emotion-enrichment methods on emerging transformer-based models [bidirectional encoder representations from transformers (BERT), a robustly optimized BERT pretraining approach, a distilled version of BERT, and efficiently learning an encoder that classifies token replacements accurately] and a traditional semantic model (Word2Vec) (as a baseline) on the Turkish (a highly agglutinative language) dataset. The performance was analyzed with classification models and cosine-similarity metrics.en_US
dc.language.isoenen_US
dc.publisherIeee Computer Socen_US
dc.relation.ispartofIt Professionalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMeasurementen_US
dc.subjectEmotion recognitionen_US
dc.subjectSocial networking (online)en_US
dc.subjectSemanticsen_US
dc.subjectBidirectional controlen_US
dc.subjectTransformersen_US
dc.subjectEncodingen_US
dc.titleEnriching Transformer-Based Embeddings for Emotion Identification in an Agglutinative Language: Turkishen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/MITP.2023.3278029-
dc.identifier.scopus2-s2.0-85169291817en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridKumova Metin, Senem/0000-0002-9606-3625-
dc.authorscopusid57195217693-
dc.authorscopusid24471923700-
dc.identifier.volume25en_US
dc.identifier.issue4en_US
dc.identifier.startpage67en_US
dc.identifier.endpage73en_US
dc.identifier.wosWOS:001051688900011en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
crisitem.author.dept05.04. Software Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
4886.pdf
  Restricted Access
360.69 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

80
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.