Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4891
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOkur, Erdem-
dc.contributor.authorTürkan, Mehmet-
dc.date.accessioned2023-10-27T06:43:35Z-
dc.date.available2023-10-27T06:43:35Z-
dc.date.issued2024-
dc.identifier.issn0957-4174-
dc.identifier.issn1873-6793-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2023.121531-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4891-
dc.description.abstractThe human skin, the largest organ with multiple layered functionalities, houses melanocytes in the deeper strata of its epidermis. These cells can be adversely impacted by ultraviolet radiation, thereby instigating melanoma, the deadliest form of skin cancer. Failure to detect melanoma at an early stage can potentially lead to metastasis, forming complex tumors in other tissues. Despite substantial efforts, visual inspections can occasionally overlook melanoma cases due to inherent subjectivity. To surmount this challenge, an automated detection system is necessary. Recent attempts to establish such a system have predominantly employed push-throughstrategies involving deep (neural) networks and their ensembles, which however necessitate significant computational resources. This paper presents a novel approach, amalgamating a conventional machine learning technique, Bag of Visual Words, with a pretrained deep neural network for comprehensive deep feature extraction from enhanced input image patches. The proposed method, assessed on the ISIC Challenge 2017 dataset, surpassed all other entries on the challenge leader-board, registering an accuracy of 96.2% in the task of lesion classification.en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMelanomaen_US
dc.subjectNeural networksen_US
dc.subjectBag of Visual Wordsen_US
dc.subjectFeature extractionen_US
dc.subjectSkin canceren_US
dc.subjectISIC challengeen_US
dc.subjectConvolutional Neural-Networksen_US
dc.subjectDermoscopyen_US
dc.subjectClassificationen_US
dc.titleWeighted Bag of Visual Words with enhanced deep features for melanoma detectionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.eswa.2023.121531-
dc.identifier.scopus2-s2.0-85171617135en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57195215602-
dc.authorscopusid57219464962-
dc.identifier.volume237en_US
dc.identifier.wosWOS:001077582400001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextreserved-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
4891.pdf
  Restricted Access
958.55 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Nov 20, 2024

Page view(s)

84
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.