Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4936
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeskin, T.-
dc.contributor.authorGungormusler, M.-
dc.contributor.authorBayar, B.-
dc.contributor.authorAbubackar, H.N.-
dc.date.accessioned2023-10-27T06:45:14Z-
dc.date.available2023-10-27T06:45:14Z-
dc.date.issued2023-
dc.identifier.isbn9780323983631-
dc.identifier.urihttps://doi.org/10.1016/B978-0-323-98363-1.00001-6-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4936-
dc.description.abstractNumerous strategies have been suggested to address the issue of global warming, which should be prioritized. Due to the availability of effective outcomes via well-established biotechnological applications, current developments have shown the benefits and superiority of nontraditional techniques for more sustainable bioprocessing. Several mesophilic and thermophilic bacteria have reported a distinct fermentation route using C1 gases (e.g. CO and CO2) frequently found in waste gas streams or syngas to generate bio commodities such as acetic acid, ethanol, butanol, 2,3-Butanediol, and hydrogen. This chapter discusses the aforementioned unconventional technologies, which include hydrogen generation technologies such as biological water-gas shift process and microbial electrolysis. Additional details on these technologies, including the effect of microbial community selection on metabolic pathways, the role of bioreactor design in enhancing liquid-gas mass transfer, process parameters, direct and mediated electron transfer mechanisms, and the characteristics of membranes that contribute to improved conductivity and stability under dynamic process conditions. Future prospects include the adaption of different process parameters and materials, such as biochar incorporation into fermentation, and the integration of technologies into bioelectrochemical systems in order to develop a more sustainable method of hydrogen generation. © 2023 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofBioenergy Engineering: Fundamentals, Methods, Modelling, and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnode respiring bacteria (ARB)en_US
dc.subjectBiohydrogen productionen_US
dc.subjectCarboxydotrophic hydrogenogensen_US
dc.subjectMicrobial electrolysis cellen_US
dc.subjectSyngas fermentationen_US
dc.subjectWaste gasen_US
dc.subjectWater gas shift reactionen_US
dc.titleBiohydrogen production by biological water-gas shift reaction and bioelectrochemical systemsen_US
dc.typeBook Parten_US
dc.identifier.doi10.1016/B978-0-323-98363-1.00001-6-
dc.identifier.scopus2-s2.0-85170158227en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57034340800-
dc.authorscopusid36198453500-
dc.authorscopusid57210284808-
dc.authorscopusid36815751200-
dc.identifier.startpage353en_US
dc.identifier.endpage380en_US
dc.institutionauthor-
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeBook Part-
item.fulltextNo Fulltext-
item.languageiso639-1en-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Oct 2, 2024

Page view(s)

70
checked on Sep 30, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.