Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4960
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKıranyaz, Serkan-
dc.contributor.authorMalik, Junaid-
dc.contributor.authorYamaç, Mehmet-
dc.contributor.authorDuman, Mert-
dc.contributor.authorAdalıoğlu, İlke-
dc.contributor.authorGüldoğan, Esin-
dc.contributor.authorİnce, Türker-
dc.date.accessioned2023-11-25T09:38:45Z-
dc.date.available2023-11-25T09:38:45Z-
dc.date.issued2023-
dc.identifier.issn2471-285X-
dc.identifier.urihttps://doi.org/10.1109/TETCI.2023.3314658-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4960-
dc.descriptionArticle; Early Accessen-US
dc.description.abstractSelf-Organized Operational Neural Networks (Self-ONNs) have recently been proposed as new-generation neural network models with nonlinear learning units, i.e., the generative neurons that yield an elegant level of diversity; however, like its predecessor, conventional Convolutional Neural Networks (CNNs), they still have a common drawback: localized (fixed) kernel operations. This severely limits the receptive field and information flow between layers and thus brings the necessity for deep and complex models. It is highly desired to improve the receptive field size without increasing the kernel dimensions. This requires a significant upgrade over the generative neurons to achieve the non-localized kernel operations for each connection between consecutive layers. In this article, we present superior (generative) neuron models (or super neurons in short) that allow random or learnable kernel shifts and thus can increase the receptive field size of each connection. The kernel localization process varies among the two super-neuron models. The first model assumes randomly localized kernels within a range and the second one learns (optimizes) the kernel locations during training. An extensive set of comparative evaluations against conventional and deformable convolutional, along with the generative neurons demonstrates that super neurons can empower Self-ONNs to achieve a superior learning and generalization capability with a minimal computational complexity burden. PyTorch implementation of Self-ONNs with super-neurons is now publically shared.en_US
dc.description.sponsorshipQatar National Library; Academy of Finland project AWcHA; Business Finland project AMALIAen_US
dc.description.sponsorshipOpen Access funding provided by the Qatar National Library. The work is partially funded by Funding from Academy of Finland project AWcHA and Business Finland project AMALIA.en_US
dc.language.isoenen_US
dc.publisherIeee-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIeee Transactions on Emerging Topics In Computational Intelligenceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConvolutional neural networksen_US
dc.subjectgenerative neuronsen_US
dc.subjectnon-localized kernelsen_US
dc.subjectoperational neural networksen_US
dc.subjectreceptive fielden_US
dc.subjectOperational Neural-Networksen_US
dc.subjectRestorationen_US
dc.titleSuper Neuronsen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TETCI.2023.3314658-
dc.identifier.scopus2-s2.0-85174846848-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridGabbouj, Moncef/0000-0002-9788-2323;-
dc.authorwosidGabbouj, Moncef/G-4293-2014-
dc.authorwosidInce, Turker/F-1349-2019-
dc.authorwosidKiranyaz, Serkan/AAK-1416-2021-
dc.authorscopusid7801632948-
dc.authorscopusid57201589931-
dc.authorscopusid55806806200-
dc.authorscopusid57817073700-
dc.authorscopusid57817881300-
dc.authorscopusid6507299411-
dc.authorscopusid56259806600-
dc.identifier.wosWOS:001085257100001-
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ2-
item.openairetypeArticle-
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
SuperNeurons.pdf12.47 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Apr 2, 2025

WEB OF SCIENCETM
Citations

2
checked on Apr 2, 2025

Page view(s)

348
checked on Mar 31, 2025

Download(s)

16
checked on Mar 31, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.