Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/4977
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiranyaz, Serkan-
dc.contributor.authorİnce, Türker-
dc.contributor.authorAbdeljaber, O.-
dc.contributor.authorAvci, O.-
dc.contributor.authorGabbouj, M.-
dc.date.accessioned2023-11-25T09:38:54Z-
dc.date.available2023-11-25T09:38:54Z-
dc.date.issued2019-
dc.identifier.isbn9781479981311-
dc.identifier.issn1520-6149-
dc.identifier.urihttps://doi.org/10.1109/ICASSP.2019.8682194-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/4977-
dc.descriptionThe Institute of Electrical and Electronics Engineers Signal Processing Societyen_US
dc.description44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 -- 12 May 2019 through 17 May 2019 -- 149034en_US
dc.description.abstract1D Convolutional Neural Networks (CNNs) have recently become the state-of-the-art technique for crucial signal processing applications such as patient-specific ECG classification, structural health monitoring, anomaly detection in power electronics circuitry and motor-fault detection. This is an expected outcome as there are numerous advantages of using an adaptive and compact 1D CNN instead of a conventional (2D) deep counterparts. First of all, compact 1D CNNs can be efficiently trained with a limited dataset of 1D signals while the 2D deep CNNs, besides requiring 1D to 2D data transformation, usually need datasets with massive size, e.g., in the »Big Data» scale in order to prevent the well-known »overfitting» problem. 1D CNNs can directly be applied to the raw signal (e.g., current, voltage, vibration, etc.) without requiring any pre- or post-processing such as feature extraction, selection, dimension reduction, denoising, etc. Furthermore, due to the simple and compact configuration of such adaptive 1D CNNs that perform only linear 1D convolutions (scalar multiplications and additions), a real-time and low-cost hardware implementation is feasible. This paper reviews the major signal processing applications of compact 1D CNNs with a brief theoretical background. We will present their state-of-the-art performances and conclude with focusing on some major properties. Keywords - 1-D CNNs, Biomedical Signal Processing, SHM. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnomaly detectionen_US
dc.subjectBiomedical signal processingen_US
dc.subjectConvolutionen_US
dc.subjectFault detectionen_US
dc.subjectFeature extractionen_US
dc.subjectLarge dataseten_US
dc.subjectMetadataen_US
dc.subjectNeural networksen_US
dc.subjectSpeech communicationen_US
dc.subjectStructural health monitoringen_US
dc.subjectConvolutional neural networken_US
dc.subjectDimension reductionen_US
dc.subjectEcg classificationsen_US
dc.subjectLow cost hardwareen_US
dc.subjectScalar multiplicationen_US
dc.subjectSignal processing applicationsen_US
dc.subjectState-of-the-art performanceen_US
dc.subjectState-of-the-art techniquesen_US
dc.subjectAudio signal processingen_US
dc.title1-D Convolutional Neural Networks for Signal Processing Applicationsen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ICASSP.2019.8682194-
dc.identifier.scopus2-s2.0-85068995333en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid7801632948-
dc.authorscopusid56259806600-
dc.authorscopusid56811553100-
dc.authorscopusid6701761980-
dc.authorscopusid7005332419-
dc.identifier.volume2019-Mayen_US
dc.identifier.startpage8360en_US
dc.identifier.endpage8364en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
4977.pdf
  Restricted Access
796.91 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

210
checked on Nov 20, 2024

Page view(s)

328
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.