Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5019
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAkbuğday, Burak-
dc.contributor.authorBozbas, O. A.-
dc.contributor.authorCura, O.K.-
dc.contributor.authorPehlivan, Sude-
dc.contributor.authorAkan, Aydın-
dc.date.accessioned2023-12-26T07:28:49Z-
dc.date.available2023-12-26T07:28:49Z-
dc.date.issued2023-
dc.identifier.isbn9789464593600-
dc.identifier.issn2219-5491-
dc.identifier.urihttps://doi.org/10.23919/EUSIPCO58844.2023.10289818-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5019-
dc.description31st European Signal Processing Conference, EUSIPCO 2023 -- 4 September 2023 through 8 September 2023 -- 194070en_US
dc.description.abstractAttention deficit hyperactivity disorder (ADHD) is a mental disorder that affects the behavior of the persons, and usually onsets in childhood. ADHD generally causes impulsivity, hyperactivity, and inattention which impairs day-to-day life even in the adulthood if left undiagnosed and untreated. Although various guidelines for diagnosis of ADHD exist, a universally accepted objective diagnostic procedure is not established. Since current diagnosis of ADHD heavily relies on the expertise of healthcare providers, an EEG Topographic Feature Map (EEG-FM) based method is proposed in this study which aims to objectively diagnose ADHD. 6 different features extracted from EEG recordings acquired from 33 participants, 15 ADHD patients and 18 control subjects, converted into EEG-FM images and fed into a convolutional neural network (CNN) based classifier. Results indicate that the proposed method can accurately classify ADHD patients with up to 99% accuracy, precision, and recall. © 2023 European Signal Processing Conference, EUSIPCO. All rights reserved.en_US
dc.description.sponsorship2022-07en_US
dc.description.sponsorship*This study was partially supported by Izmir University of Economics, Scientific Research Projects Coordination Unit. Project number: 2022-07.en_US
dc.language.isoenen_US
dc.publisherEuropean Signal Processing Conference, EUSIPCOen_US
dc.relation.ispartofEuropean Signal Processing Conferenceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAttention Deficit Hyperactivity Disorder (ADHD) detectionen_US
dc.subjectCNNen_US
dc.subjectdeep learningen_US
dc.subjectEEG feature mapsen_US
dc.subjectDeep learningen_US
dc.subjectDiagnosisen_US
dc.subjectDiseasesen_US
dc.subjectFeature extractionen_US
dc.subjectSignal processingen_US
dc.subject'currenten_US
dc.subjectAttention deficit hyperactivity disorderen_US
dc.subjectAttention deficit hyperactivity disorder detectionen_US
dc.subjectConvolutional neural networken_US
dc.subjectDeep learningen_US
dc.subjectDiagnostic procedureen_US
dc.subjectEEG feature mapen_US
dc.subjectFeature mapen_US
dc.subjectMental disordersen_US
dc.subjectTopographic featuresen_US
dc.subjectConvolutional neural networksen_US
dc.titleDetection of Attention Deficit Hyperactivity Disorder by Using EEG Feature Maps and Deep Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.23919/EUSIPCO58844.2023.10289818-
dc.identifier.scopus2-s2.0-85178342858en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57211987353-
dc.authorscopusid58738485100-
dc.authorscopusid57195223021-
dc.authorscopusid57215310544-
dc.authorscopusid35617283100-
dc.identifier.startpage1105en_US
dc.identifier.endpage1109en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextopen-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.02. Biomedical Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
AT-Ilave-5019.pdf17.68 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

100
checked on Nov 18, 2024

Download(s)

16
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.