Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5032
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞen, Sena Yağmur-
dc.contributor.authorCura, O.K.-
dc.contributor.authorAkan, Aydın-
dc.date.accessioned2023-12-26T07:28:53Z-
dc.date.available2023-12-26T07:28:53Z-
dc.date.issued2023-
dc.identifier.isbn9798350311402-
dc.identifier.urihttps://doi.org/10.1109/CoDIT58514.2023.10284052-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5032-
dc.descriptionIEEE;LISIER;Sapienza Universita di Romaen_US
dc.description9th International Conference on Control, Decision and Information Technologies, CoDIT 2023 -- 3 July 2023 through 6 July 2023 -- 193871en_US
dc.description.abstractDementia is a prevalent neurological disorder that results in cognitive function decline, significantly impacting the quality of life. In this study, a signal decomposition based method is proposed for the detection and follow-up Alzheimer's Dementia (AD) by using Electroencephalography (EEG) signals. The proposed approach uses the Intrinsic Time Scale Decomposition (ITD) to classify EEG segments of AD patients and control subjects. Signal decomposition process is conducted with 5 seconds EEG segment duration. Proper Rotation Components (PRCs) extracted from the EEG segments are used to train a 1-Dimensional Convolutional Neural Network (1D CNN). The proposed method is compared with classification of 5s duration EEG segments using the same CNN architecture. The experimental results demonstrate that utilizing ITD based approach yields better classification performance when compared to using the plain EEG signals. © 2023 IEEE.en_US
dc.description.sponsorship2022-07en_US
dc.description.sponsorship*Supported by Izmir University of Economics, Scientific Research Projects Coordination Unit. Project number: 2022-07. S.Y. Sen is with the Dept. of Electrical and Electronics Engineering, Izmir University of Economics, Izmir, Turkey e-mail: sena.yagmur@ieu.edu.tr O.Karabiber Cura is with the Dept. of Biomedical Engineering, Izmir Katip Celebi University, Izmir, Turkey e-mail: ozlem.karabiber@ikcu.edu.tr A. Akan is with the Dept. of Electrical and Electronics Engineering, Izmir University of Economics, Izmir, Turkey e-mail: akan.aydin@ieu.edu.tren_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof9th 2023 International Conference on Control, Decision and Information Technologies, CoDIT 2023en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiomedical signal processingen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectElectrophysiologyen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectAlzheimer dementiaen_US
dc.subjectCognitive functionsen_US
dc.subjectControl subjecten_US
dc.subjectDecomposition processen_US
dc.subjectDementia patientsen_US
dc.subjectFollow upen_US
dc.subjectIntrinsic time-scale decompositionsen_US
dc.subjectNeurological disordersen_US
dc.subjectQuality of lifeen_US
dc.subjectSignal decompositionen_US
dc.subjectElectroencephalographyen_US
dc.titleDetection of Alzheimer's Dementia Using Intrinsic Time Scale Decomposition of EEG Signals and Deep Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/CoDIT58514.2023.10284052-
dc.identifier.scopus2-s2.0-85177469825en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57215314563-
dc.authorscopusid57195223021-
dc.authorscopusid35617283100-
dc.identifier.startpage93en_US
dc.identifier.endpage98en_US
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
5032.pdf
  Restricted Access
445.58 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

76
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.