Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5033
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞen, Sena Yağmur-
dc.contributor.authorCura, O.K.-
dc.contributor.authorAkan, Aydın-
dc.date.accessioned2023-12-26T07:28:54Z-
dc.date.available2023-12-26T07:28:54Z-
dc.date.issued2023-
dc.identifier.isbn9798350306590-
dc.identifier.urihttps://doi.org/10.1109/ASYU58738.2023.10296777-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5033-
dc.description2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023 -- 11 October 2023 through 13 October 2023 -- 194153en_US
dc.description.abstractDementia is a prevalent neurological disorder that impairs cognitive functions and significantly diminishes the quality of life. In this research, a deep learning method is introduced for detecting and monitoring Alzheimer's Dementia (AD) by analyzing Electroencephalography (EEG) signals. To accomplish this, a signal decomposition technique known as Intrinsic Time Scale Decomposition (ITD) is employed to classify EEG segments obtained from both AD patients and control subjects. The analysis specifically concentrates on 5-second EEG segments, utilizing ITD to extract Proper Rotation Components (PRCs) from these segments. The PRCs are subsequently transformed into Time-Frequency (TF) images using the Short-Time Fourier Transform (STFT) spectrogram. These TF images serve as training data for a 2-Dimensional Convolutional Neural Network (2D CNN). The proposed approach is compared with the classification of the spectrogram of 5-second EEG segments using the same CNN architecture. The experimental results conclusively demonstrate the superior classification performance of the ITD-based approach when compared to the utilization of raw EEG signals. © 2023 IEEE.en_US
dc.description.sponsorship2022-07en_US
dc.description.sponsorship*This study was partially supported by Izmir University of Economics, Scientific Research Projects Coordination Unit. Project number: 2022-07.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlzehimer's Dementia (AD)en_US
dc.subjectClassificationen_US
dc.subjectCNNsen_US
dc.subjectDeep Learningen_US
dc.subjectElectroencephalography (EEG)en_US
dc.subjectIntrinsic Time Scale Decomposition (ITD)en_US
dc.subjectShort-Time Fourier Transform (STFT)en_US
dc.subjectSpectrogramen_US
dc.subjectBiomedical signal processingen_US
dc.subjectConvolutional neural networksen_US
dc.subjectDeep learningen_US
dc.subjectElectrophysiologyen_US
dc.subjectImage classificationen_US
dc.subjectLearning systemsen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectNeurophysiologyen_US
dc.subjectSpectrographsen_US
dc.subjectAlzehimer dementiaen_US
dc.subjectDeep learningen_US
dc.subjectElectroencephalographyen_US
dc.subjectIntrinsic time scale decompositionen_US
dc.subjectIntrinsic time-scale decompositionsen_US
dc.subjectRotation componentsen_US
dc.subjectShort time Fourier transformsen_US
dc.subjectShort-time fourier transformen_US
dc.subjectSpectrogramsen_US
dc.subjectTime-frequency imagesen_US
dc.subjectElectroencephalographyen_US
dc.titleClassification of Dementia EEG Signals by Using Time-Frequency Images for Deep Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ASYU58738.2023.10296777-
dc.identifier.scopus2-s2.0-85178310455en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57215314563-
dc.authorscopusid57195223021-
dc.authorscopusid35617283100-
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
5033.pdf
  Restricted Access
370.7 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

94
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.