Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5171
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCicek, G.-
dc.contributor.authorAkan, Aydın-
dc.date.accessioned2024-02-24T13:39:03Z-
dc.date.available2024-02-24T13:39:03Z-
dc.date.issued2023-
dc.identifier.isbn9798350328967-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO59875.2023.10359235-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5171-
dc.description2023 Medical Technologies Congress, TIPTEKNO 2023 -- 10 November 2023 through 12 November 2023 -- 195703en_US
dc.description.abstractAttention deficit hyperactivity (ADHD) is a psychiatric disorder that affects millions of children and many times last into adulthood. There is no single test that can show whether a person has ADHD. The symptoms of ADHD vary from person to person. Therefore it is hard to diagnose ADHD contrary many physical illness. Our aim is to create methods to minimize human effort and increase accurate of diagnosis of attention deficit hyperactivity disorder. So, we collected Structural Magnetic Resonance Imaging (MRI) from 26 subjects: 11 controls and 15 children diagnosed with ADHD. The data was provided from NPIstanbul NeuroPsyhiatric Hospital. We used k-means clustering algorithm to extract gray matter and white matter from the axial plane. Four features is extracted from these region; area of gray matter, area of white matter and perimeter of gray matter, perimeter of white matter. The most important attribute was determined by using principal component analysis. The models were built on the k-nearest neighbors algorithm (knn) and decision tree using Matlab machine learning toolbox. The experiments were conducted on a full training dataset including 26 instance and 5 fold cross validation was adopted for randomly sampling training and test set. The outcome of our study will reduce the number medical errors by informing physicians in their determination of diagnosing of attention deficit hyperactivity disorder. These method we used classifies ADHD successfully up to % 91 accuracy. © 2023 IEEE.en_US
dc.description.sponsorship2017-ÖNAP-MÜMF-0002, 2019-GAP-MÜMF-003en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2023 - Medical Technologies Congress, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectADHDen_US
dc.subjectClassificationen_US
dc.subjectdecision treeen_US
dc.subjectgray and white matteren_US
dc.subjectk-nearest neighboren_US
dc.subjectClassification (of information)en_US
dc.subjectComputer aided diagnosisen_US
dc.subjectDecision treesen_US
dc.subjectDiseasesen_US
dc.subjectImage classificationen_US
dc.subjectImage segmentationen_US
dc.subjectK-means clusteringen_US
dc.subjectMotion compensationen_US
dc.subjectNearest neighbor searchen_US
dc.subjectPrincipal component analysisen_US
dc.subjectStatistical testsen_US
dc.subjectADHDen_US
dc.subjectAttention deficit hyperactivityen_US
dc.subjectAttention deficit hyperactivity disorderen_US
dc.subjectAutomated segmentationen_US
dc.subjectAxial planesen_US
dc.subjectGray matteren_US
dc.subjectGray whiteen_US
dc.subjectK-means clustering algorithmsen_US
dc.subjectPsychiatric disordersen_US
dc.subjectWhite matteren_US
dc.subjectMagnetic resonance imagingen_US
dc.titleAutomated Segmentation of Gray and White Matter Regions in Brain MRI Images for Computer Aided Diagnosis of ADHDen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO59875.2023.10359235-
dc.identifier.scopus2-s2.0-85182739679en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57211992616-
dc.authorscopusid35617283100-
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
5171.pdf
  Restricted Access
295.31 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

132
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.