Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5172
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBonyani, M.-
dc.contributor.authorYeganli, Faezeh-
dc.contributor.authorYeganli, S.F.-
dc.contributor.authorShahidi, N.-
dc.date.accessioned2024-02-24T13:39:04Z-
dc.date.available2024-02-24T13:39:04Z-
dc.date.issued2023-
dc.identifier.isbn9798350328967-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO59875.2023.10359225-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5172-
dc.description2023 Medical Technologies Congress, TIPTEKNO 2023 -- 10 November 2023 through 12 November 2023 -- 195703en_US
dc.description.abstractLiver transplantation (LT) offers a vital solution for end-stage liver disease patients. Predicting post-LT survival, however, remains challenging. This paper introduces an artificial intelligence (AI)-based model to predict post-operative survival after LT. The proposed model employs a two-stream recurrent neural network (RNN) using deep long short-term memory (LSTM-RNN) and bidirectional long short-term memory (BiLSTM-RNN) to extract inherent features of donors and recipients, respectively. Additionally, a self-attention based module is developed to capture the influential features of donors' and patients' data. To eliminate errors in the prediction model caused by imbalanced distributions, implicit semantic data augmentation (ISDA) is employed. Tested with 5-fold cross-validation, the proposed model achieved 99.47% accuracy and 0.996 the area under the curve, outperforming existing models in prediction performance. © 2023 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2023 - Medical Technologies Congress, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiLSTM-RNNen_US
dc.subjectLiver Transplantationen_US
dc.subjectLSTM-RNNen_US
dc.subjectPost-Operativeen_US
dc.subjectPredictionen_US
dc.subjectSelf-Attentionen_US
dc.subjectSurvivalen_US
dc.subjectBrainen_US
dc.subjectLong short-term memoryen_US
dc.subjectSemanticsen_US
dc.subjectBiLSTM-recurrent neural networken_US
dc.subjectLiver diseaseen_US
dc.subjectLiver transplantationen_US
dc.subjectLSTM-recurrent neural networken_US
dc.subjectPatient dataen_US
dc.subjectPost-operativeen_US
dc.subjectPrediction modellingen_US
dc.subjectSelf-attentionen_US
dc.subjectSurvivalen_US
dc.subjectTwo-streamen_US
dc.subjectForecastingen_US
dc.titleDeepSurvLiver: Predicting Post-Operative Survival after Liver Transplantationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO59875.2023.10359225-
dc.identifier.scopus2-s2.0-85182737660en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57223301352-
dc.authorscopusid56247299800-
dc.authorscopusid57194275954-
dc.authorscopusid58821626100-
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
5172.pdf
  Restricted Access
794.9 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

80
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.