Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5180
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCura, O.K.-
dc.contributor.authorCiklacandir, F.G.-
dc.contributor.authorAkan, Aydın-
dc.contributor.authorAtli, S.K.-
dc.date.accessioned2024-02-24T13:39:06Z-
dc.date.available2024-02-24T13:39:06Z-
dc.date.issued2023-
dc.identifier.isbn9798350328967-
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO59875.2023.10359178-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5180-
dc.description2023 Medical Technologies Congress, TIPTEKNO 2023 -- 10 November 2023 through 12 November 2023 -- 195703en_US
dc.description.abstractAttention Deficit Hyperactivity Disorder (ADHD) is a neurological disorder that often first appears in children. The condition is treated via behavioral studies, but there is no definitive technique to identify it. Electroencephalography (EEG) signals of ADHD patients are widely investigated to understand alterations in the brain. We offered EEG connectivity featured image creation to be used as input to CNN architectures in the proposed study. EEG data from 15 ADHD patients and 18 control participants are evaluated, and ADHD detection performance is shown, to demonstrate the efficacy of the suggested method. EEG connectivity featured images are obtained using six different connectivity features (magnitude square coherence, cross-power spectral density, correlation coefficient, covariance, cohentropy coefficient, and correntrophy coefficient). Deep features are extracted for each image subset using EEG connectivity-featured images to train ResNet-50. The effectiveness of the suggested strategy for detecting ADHD is assessed using the DT, LR, and SVM classifiers and decision-level fusion. According to experimental results, employing EEG connectivity featured images as input to ResNet-50 architecture, and decision-level fusion offers important advantages in identifying ADHD. © 2023 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2023 - Medical Technologies Congress, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectADHDen_US
dc.subjectDeep Feature extractionen_US
dc.subjectEEG connectivity featured imageen_US
dc.subjectMachine learningen_US
dc.subjectDeep learningen_US
dc.subjectDiseasesen_US
dc.subjectElectrophysiologyen_US
dc.subjectFeature extractionen_US
dc.subjectImage fusionen_US
dc.subjectImage processingen_US
dc.subjectSpectral densityen_US
dc.subjectAttention deficit hyperactivity disorderen_US
dc.subjectBrain connectivityen_US
dc.subjectConditionen_US
dc.subjectConnectivity informationen_US
dc.subjectDecision level fusionen_US
dc.subjectDeep feature extractionen_US
dc.subjectElectroencephalography connectivity featured imageen_US
dc.subjectFeatures extractionen_US
dc.subjectMachine-learningen_US
dc.subjectNeurological disordersen_US
dc.subjectElectroencephalographyen_US
dc.titleDetection of Attention Deficit Hyperactivity Disorder using Decision-level Fusion of Brain Connectivity Information Based on Deep Learningen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/TIPTEKNO59875.2023.10359178-
dc.identifier.scopus2-s2.0-85182727233en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57195223021-
dc.authorscopusid57211987500-
dc.authorscopusid35617283100-
dc.authorscopusid56709608600-
dc.institutionauthor-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityN/A-
item.grantfulltextreserved-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
5180.pdf
  Restricted Access
601.83 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

118
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.