Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5200
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKatıcan Tuğçe-
dc.contributor.authorBordbar, Hashem-
dc.date.accessioned2024-03-30T11:20:50Z-
dc.date.available2024-03-30T11:20:50Z-
dc.date.issued2024-
dc.identifier.issn2075-1680-
dc.identifier.urihttps://doi.org/10.3390/axioms13020097-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5200-
dc.description.abstractThis manuscript aims to provide a new characterization of Sheffer stroke Hilbert algebras due to their ideals and proposes stabilizers. In the setup of the main results, we construct particular subsets of Sheffer stroke Hilbert algebras and we propose important properties of these subsets by investigating whether these sets are ideals or not. Furthermore, we investigate whether the introduced subsets of Sheffer stroke Hilbert algebras are minimal ideals. Afterwards, we define stabilizers in a Sheffer stroke Hilbert algebra and obtain their set theoretical properties. As an implementation of the theoretical findings, we present numerous examples and illustrative remarks to guide readers.en_US
dc.description.sponsorshipSlovenian Research and Innovation Agencyen_US
dc.description.sponsorshipNo Statement Availableen_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAxiomsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject(Sheffer stroke) Hilbert algebraen_US
dc.subjectSheffer operationen_US
dc.subjectidealen_US
dc.subjectstabilizeren_US
dc.titleSheffer Stroke Hilbert Algebras Stabilizing by Idealsen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/axioms13020097-
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.identifier.volume13en_US
dc.identifier.issue2en_US
dc.identifier.wosWOS:001172077200001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityN/A-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Mathematics-
Appears in Collections:WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
5200.pdf307.96 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

92
checked on Nov 18, 2024

Download(s)

46
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.