Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5227
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zanin, M. | - |
dc.contributor.author | Aktürk, T. | - |
dc.contributor.author | Yıldırım, E. | - |
dc.contributor.author | Yerlikaya, D. | - |
dc.contributor.author | Yener, Görsev | - |
dc.contributor.author | Güntekin, B. | - |
dc.date.accessioned | 2024-03-30T11:21:36Z | - |
dc.date.available | 2024-03-30T11:21:36Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2472-1751 | - |
dc.identifier.uri | https://doi.org/10.1162/netn_a_00353 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5227 | - |
dc.description.abstract | We propose a novel approach for the reconstruction of functional networks representing brain dynamics based on the idea that the coparticipation of two brain regions in a common cognitive task should result in a drop in their identifiability, or in the uniqueness of their dynamics. This identifiability is estimated through the score obtained by deep learning models in supervised classification tasks and therefore requires no a priori assumptions about the nature of such coparticipation. The method is tested on EEG recordings obtained from Alzheimer’s and Parkinson’s disease patients, and matched healthy volunteers, for eyes-open and eyes-closed resting–state conditions, and the resulting functional networks are analysed through standard topological metrics. Both groups of patients are characterised by a reduction in the identifiability of the corresponding EEG signals, and by differences in the patterns that support such identifiability. Resulting functional networks are similar, but not identical to those reconstructed by using a correlation metric. Differences between control subjects and patients can be observed in network metrics like the clustering coefficient and the assortativity in different frequency bands. Differences are also observed between eyes open and closed conditions, especially for Parkinson’s disease patients. © 2024 Massachusetts Institute of Technology. | en_US |
dc.description.sponsorship | H2020 European Research Council, ERC: 851255; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 218S314; Agencia Estatal de Investigación, AEI: CEX2021-001164-M, MCIN/AEI/10.13039/501100011033 | en_US |
dc.language.iso | en | en_US |
dc.publisher | MIT Press Journals | en_US |
dc.relation.ispartof | Network Neuroscience | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Alzheimer’s disease | en_US |
dc.subject | Deep learning | en_US |
dc.subject | EEG | en_US |
dc.subject | Functional networks | en_US |
dc.subject | Parkinson’s disease | en_US |
dc.subject | Brain | en_US |
dc.subject | Alzheimer | en_US |
dc.subject | Alzheimer’s disease | en_US |
dc.subject | Brain dynamics | en_US |
dc.subject | Brain functional networks | en_US |
dc.subject | Brain regions | en_US |
dc.subject | Cognitive task | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Functional network | en_US |
dc.subject | Identifiability | en_US |
dc.subject | Parkinson’s disease | en_US |
dc.subject | Deep learning | en_US |
dc.title | Reconstructing brain functional networks through identifiability and deep learning | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1162/netn_a_00353 | - |
dc.identifier.scopus | 2-s2.0-85187463594 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 23991967500 | - |
dc.authorscopusid | 57200757500 | - |
dc.authorscopusid | 57209713497 | - |
dc.authorscopusid | 57194044185 | - |
dc.authorscopusid | 7003804891 | - |
dc.authorscopusid | 15044484600 | - |
dc.identifier.volume | 8 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 241 | en_US |
dc.identifier.endpage | 259 | en_US |
dc.identifier.wos | WOS:001180843800001 | en_US |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | Q2 | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 09.03. Medicine | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Page view(s)
80
checked on Nov 18, 2024
Download(s)
18
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.