Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5227
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZanin, M.-
dc.contributor.authorAktürk, T.-
dc.contributor.authorYıldırım, E.-
dc.contributor.authorYerlikaya, D.-
dc.contributor.authorYener, Görsev-
dc.contributor.authorGüntekin, B.-
dc.date.accessioned2024-03-30T11:21:36Z-
dc.date.available2024-03-30T11:21:36Z-
dc.date.issued2024-
dc.identifier.issn2472-1751-
dc.identifier.urihttps://doi.org/10.1162/netn_a_00353-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5227-
dc.description.abstractWe propose a novel approach for the reconstruction of functional networks representing brain dynamics based on the idea that the coparticipation of two brain regions in a common cognitive task should result in a drop in their identifiability, or in the uniqueness of their dynamics. This identifiability is estimated through the score obtained by deep learning models in supervised classification tasks and therefore requires no a priori assumptions about the nature of such coparticipation. The method is tested on EEG recordings obtained from Alzheimer’s and Parkinson’s disease patients, and matched healthy volunteers, for eyes-open and eyes-closed resting–state conditions, and the resulting functional networks are analysed through standard topological metrics. Both groups of patients are characterised by a reduction in the identifiability of the corresponding EEG signals, and by differences in the patterns that support such identifiability. Resulting functional networks are similar, but not identical to those reconstructed by using a correlation metric. Differences between control subjects and patients can be observed in network metrics like the clustering coefficient and the assortativity in different frequency bands. Differences are also observed between eyes open and closed conditions, especially for Parkinson’s disease patients. © 2024 Massachusetts Institute of Technology.en_US
dc.description.sponsorshipH2020 European Research Council, ERC: 851255; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 218S314; Agencia Estatal de Investigación, AEI: CEX2021-001164-M, MCIN/AEI/10.13039/501100011033en_US
dc.language.isoenen_US
dc.publisherMIT Press Journalsen_US
dc.relation.ispartofNetwork Neuroscienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAlzheimer’s diseaseen_US
dc.subjectDeep learningen_US
dc.subjectEEGen_US
dc.subjectFunctional networksen_US
dc.subjectParkinson’s diseaseen_US
dc.subjectBrainen_US
dc.subjectAlzheimeren_US
dc.subjectAlzheimer’s diseaseen_US
dc.subjectBrain dynamicsen_US
dc.subjectBrain functional networksen_US
dc.subjectBrain regionsen_US
dc.subjectCognitive tasken_US
dc.subjectDeep learningen_US
dc.subjectFunctional networken_US
dc.subjectIdentifiabilityen_US
dc.subjectParkinson’s diseaseen_US
dc.subjectDeep learningen_US
dc.titleReconstructing brain functional networks through identifiability and deep learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1162/netn_a_00353-
dc.identifier.scopus2-s2.0-85187463594en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid23991967500-
dc.authorscopusid57200757500-
dc.authorscopusid57209713497-
dc.authorscopusid57194044185-
dc.authorscopusid7003804891-
dc.authorscopusid15044484600-
dc.identifier.volume8en_US
dc.identifier.issue1en_US
dc.identifier.startpage241en_US
dc.identifier.endpage259en_US
dc.identifier.wosWOS:001180843800001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept09.03. Medicine-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
5227.pdf2.37 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

80
checked on Nov 18, 2024

Download(s)

18
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.