Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5230
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ghasemi, A. | - |
dc.contributor.author | Yeganeh, Y.T. | - |
dc.contributor.author | Matta, A. | - |
dc.contributor.author | Kabak, Kamil Erkan | - |
dc.contributor.author | Heavey, C. | - |
dc.date.accessioned | 2024-03-30T11:21:37Z | - |
dc.date.available | 2024-03-30T11:21:37Z | - |
dc.date.issued | 2023 | - |
dc.identifier.isbn | 9798350369663 | - |
dc.identifier.issn | 0891-7736 | - |
dc.identifier.uri | https://doi.org/10.1109/WSC60868.2023.10407811 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5230 | - |
dc.description | 2023 Winter Simulation Conference, WSC 2023 -- 10 December 2023 through 13 December 2023 -- 196982 | en_US |
dc.description.abstract | Digital twin-based Production Scheduling (DTPS) is a process in which a digital model replicates a manufacturing system, known as a "Digital Twin (DT)". DT is essentially a virtual representation of physical equipment and processes that are connected to the physical environment using an online data-sharing infrastructure within the Manufacturing Execution System (MES). In the case of reactive scheduling, DT is used to detect fluctuations in the scheduling plan and execute rescheduling plans. In proactive scheduling, it is used to simulate different production scenarios and optimize future states of production operations. Replicating detailed simulation models in most PS cases is highly computationally intensive, which negates against the main goal of DT (online decision making). Thus, this research aims to examine the possibility of using data-driven models within the DT of a Flexible Job Shop (FJS) production environment aiming to provide online estimations of PS metrics enabling DT-based reactive/proactive scheduling. © 2023 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | Proceedings - Winter Simulation Conference | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Deep Learning Enabling Digital Twin Applications in Production Scheduling: Case of Flexible Job Shop Manufacturing Environment | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/WSC60868.2023.10407811 | - |
dc.identifier.scopus | 2-s2.0-85185377333 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57190121746 | - |
dc.authorscopusid | 57820211500 | - |
dc.authorscopusid | 22958611800 | - |
dc.authorscopusid | 24587842500 | - |
dc.authorscopusid | 6603835699 | - |
dc.identifier.startpage | 2148 | en_US |
dc.identifier.endpage | 2159 | en_US |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q4 | - |
dc.identifier.wosquality | N/A | - |
item.grantfulltext | reserved | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.09. Industrial Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
5230.pdf Restricted Access | 2.48 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.