Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5308
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDragomir, D.-
dc.contributor.authorPopișter, F.-
dc.contributor.authorKabak, K.E.-
dc.date.accessioned2024-05-04T14:17:59Z-
dc.date.available2024-05-04T14:17:59Z-
dc.date.issued2024-
dc.identifier.isbn9783031564468-
dc.identifier.issn2195-4356-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-56444-4_15-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5308-
dc.description8th International Scientific-Technical Conference Manufacturing, MANUFACTURING 2024 -- 14 May 2024 through 16 May 2024 -- 310369en_US
dc.description.abstractThe paper presents an exploratory investigation concerning the usage of AI tools in automotive companies in order to streamline their risk management processes. A risk identification procedure is performed at organizational and process levels, and a comparative analysis is undertaken between the classical approach for developing proper mitigation measures and the AI-supported manner of doing the same. Some of the most popular tools in this field are employed and studied, such as large language models, data analytics and knowledge representation. The differences and changes are analyzed from the point of view of their effectiveness, efficiency and adaptability within the existing manufacturing frameworks in the automotive industry. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Mechanical Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectartificial intelligenceen_US
dc.subjectautomotive industryen_US
dc.subjectrisk managementen_US
dc.subjectData Analyticsen_US
dc.subjectKnowledge representationen_US
dc.subjectRisk assessmenten_US
dc.subjectRisk managementen_US
dc.subjectAutomotive companiesen_US
dc.subjectClassical approachen_US
dc.subjectComparative analyzesen_US
dc.subjectIdentification procedureen_US
dc.subjectMitigation measuresen_US
dc.subjectOrganizational levelsen_US
dc.subjectProcess levelsen_US
dc.subjectRisk Identificationen_US
dc.subjectRisk management processen_US
dc.subjectRisks managementen_US
dc.subjectAutomotive industryen_US
dc.titleUsing AI Tools to Enhance the Risk Management Process in the Automotive Industryen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1007/978-3-031-56444-4_15-
dc.identifier.scopus2-s2.0-85190362307en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid55513591500-
dc.authorscopusid55336425200-
dc.authorscopusid24587842500-
dc.identifier.startpage189en_US
dc.identifier.endpage198en_US
dc.identifier.wosWOS:001267309800015en_US
dc.institutionauthorKabak, K.E.-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityN/A-
item.grantfulltextnone-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

98
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.