Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5350
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMahlow, F.-
dc.contributor.authorÇakmak, B.-
dc.contributor.authorKarpat, G.-
dc.contributor.authorYalçlnkaya, I.-
dc.contributor.authorFanchini, F.F.-
dc.date.accessioned2024-06-01T08:32:39Z-
dc.date.available2024-06-01T08:32:39Z-
dc.date.issued2024-
dc.identifier.issn2469-9926-
dc.identifier.urihttps://doi.org/10.1103/PhysRevA.109.052411-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5350-
dc.description.abstractWe have applied a machine learning algorithm to predict the emergence of environment-induced spontaneous synchronization between two qubits in an open system setting. In particular, we have considered three different models, encompassing global and local dissipation regimes, to describe the open system dynamics of the qubits. We have utilized the k-nearest-neighbor algorithm to estimate the long-time synchronization behavior of the qubits only using the early time expectation values of qubit observables in these three distinct models. Our findings clearly demonstrate the possibility of determining the occurrence of different synchronization phenomena with high precision even at the early stages of the dynamics using a machine learning-based approach. Moreover, we show the robustness of our approach against potential measurement errors in experiments by considering random errors in the qubit expectation values, initialization errors, as well as deviations in the environment temperature. We believe that the presented results can prove to be useful in experimental studies on the determination of quantum synchronization. © 2024 American Physical Society.en_US
dc.description.sponsorshipOffice of Naval Research, ONR: N62909-24-1-2012; Office of Naval Research, ONR; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 121F246; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK; Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP: 2023/04987-6; Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES: 88887.607339/2021-00; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES; Grantová Agentura České Republiky, GA ČR: GA CR 23-07169S; Grantová Agentura České Republiky, GA ČRen_US
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.ispartofPhysical Review Aen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMachine learningen_US]
dc.subjectNearest neighbor searchen_US]
dc.subjectQubitsen_US]
dc.subjectRandom errorsen_US]
dc.subjectSynchronizationen_US]
dc.subjectExpectation valuesen_US]
dc.subjectHigh-precisionen_US]
dc.subjectK Nearest Neighbor (k NN) algorithmen_US]
dc.subjectLearning-based approachen_US]
dc.subjectMachine learning algorithmsen_US]
dc.subjectMachine-learningen_US]
dc.subjectPotential measurementsen_US]
dc.subjectSystem Dynamicsen_US]
dc.subjectTime synchronizationen_US]
dc.subjectTwo-qubiten_US]
dc.subjectLearning algorithmsen_US]
dc.titlePredicting the onset of quantum synchronization using machine learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevA.109.052411-
dc.identifier.scopus2-s2.0-85192997675en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57214187032-
dc.authorscopusid56709443900-
dc.authorscopusid35077653300-
dc.authorscopusid56644490300-
dc.authorscopusid16022110500-
dc.identifier.volume109en_US
dc.identifier.issue5en_US
dc.identifier.wosWOS:001237594600008en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ2-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

82
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.