Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5371
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pehlivanoglu, Volkan Yasin | - |
dc.contributor.author | Pehlivanoğlu, Perihan | - |
dc.date.accessioned | 2024-06-29T13:07:37Z | - |
dc.date.available | 2024-06-29T13:07:37Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1748-8842 | - |
dc.identifier.issn | 1758-4213 | - |
dc.identifier.uri | https://doi.org/10.1108/AEAT-10-2023-0258 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5371 | - |
dc.description.abstract | Purpose - The purpose of this paper is to present an efficient path planning method for the multi-UAV system in target coverage problems. Design/methodology/approach - An enhanced particle swarm optimizer (PSO) is used to solve the path planning problem, which concerns the two-dimensional motion of multirotor unmanned aerial vehicles (UAVs) in a three-dimensional environment. Enhancements include an improved initial swarm generation and prediction strategy for succeeding generations. Initial swarm improvements include the clustering process managed by fuzzy c-means clustering method, ordering procedure handled by ant colony optimizer and design vector change. Local solutions form the foundation of a prediction strategy. Findings - Numerical simulations show that the proposed method could find near-optimal paths for multi-UAVs effectively. Practical implications - Simulations indicate the proposed method could be deployed for autonomous multi-UAV systems with target coverage problems. Originality/value - The proposed method combines intelligent methods in the early phase of PSO, handles obstacle avoidance problems with a unique approach and accelerates the process by adding a prediction strategy. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Emerald Group Publishing Ltd | en_US |
dc.relation.ispartof | Aircraft Engineering and Aerospace Technology | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Autonomous multi-UAV | en_US |
dc.subject | Path planning | en_US |
dc.subject | Target coverage | en_US |
dc.subject | Particle swarm optimization | en_US |
dc.subject | Optimization | en_US |
dc.title | An Efficient Path Planning Approach for Autonomous Multi-Uav System in Target Coverage Problems | en_US |
dc.type | Article | en_US |
dc.type | Article; Early Access | en_US |
dc.identifier.doi | 10.1108/AEAT-10-2023-0258 | - |
dc.identifier.scopus | 2-s2.0-85195550547 | - |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57196467984 | - |
dc.authorscopusid | 57227870900 | - |
dc.identifier.wos | WOS:001244032400001 | - |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | Q3 | - |
item.openairetype | Article | - |
item.openairetype | Article; Early Access | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
crisitem.author.dept | 05.01. Aerospace Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Mar 26, 2025
WEB OF SCIENCETM
Citations
1
checked on Mar 26, 2025
Page view(s)
160
checked on Mar 31, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.