Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5371
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pehlivanoglu, Volkan Yasin | - |
dc.contributor.author | Pehlivanoğlu, Perihan | - |
dc.date.accessioned | 2024-06-29T13:07:37Z | - |
dc.date.available | 2024-06-29T13:07:37Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 1748-8842 | - |
dc.identifier.issn | 1758-4213 | - |
dc.identifier.uri | https://doi.org/10.1108/AEAT-10-2023-0258 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.14365/5371 | - |
dc.description.abstract | Purpose - The purpose of this paper is to present an efficient path planning method for the multi-UAV system in target coverage problems. Design/methodology/approach - An enhanced particle swarm optimizer (PSO) is used to solve the path planning problem, which concerns the two-dimensional motion of multirotor unmanned aerial vehicles (UAVs) in a three-dimensional environment. Enhancements include an improved initial swarm generation and prediction strategy for succeeding generations. Initial swarm improvements include the clustering process managed by fuzzy c-means clustering method, ordering procedure handled by ant colony optimizer and design vector change. Local solutions form the foundation of a prediction strategy. Findings - Numerical simulations show that the proposed method could find near-optimal paths for multi-UAVs effectively. Practical implications - Simulations indicate the proposed method could be deployed for autonomous multi-UAV systems with target coverage problems. Originality/value - The proposed method combines intelligent methods in the early phase of PSO, handles obstacle avoidance problems with a unique approach and accelerates the process by adding a prediction strategy. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Emerald Group Publishing Ltd | en_US |
dc.relation.ispartof | Aircraft Engineering and Aerospace Technology | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Autonomous multi-UAV | en_US |
dc.subject | Path planning | en_US |
dc.subject | Target coverage | en_US |
dc.subject | Particle swarm optimization | en_US |
dc.subject | Optimization | en_US |
dc.title | An efficient path planning approach for autonomous multi-UAV system in target coverage problems | en_US |
dc.type | Article | en_US |
dc.type | Article; Early Access | en_US |
dc.identifier.doi | 10.1108/AEAT-10-2023-0258 | - |
dc.identifier.scopus | 2-s2.0-85195550547 | en_US |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57196467984 | - |
dc.authorscopusid | 57227870900 | - |
dc.identifier.wos | WOS:001244032400001 | en_US |
dc.institutionauthor | … | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | N/A | - |
dc.identifier.wosquality | Q3 | - |
item.grantfulltext | none | - |
item.openairetype | Article | - |
item.openairetype | Article; Early Access | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 05.01. Aerospace Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.