Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5401
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUzunbayır, Serhat-
dc.contributor.authorKurtel, Kaan-
dc.date.accessioned2024-07-21T18:43:36Z-
dc.date.available2024-07-21T18:43:36Z-
dc.date.issued2024-
dc.identifier.issn1335-9150-
dc.identifier.urihttps://doi.org/10.31577/cai_2024_3_709-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5401-
dc.description.abstractHigher order mutation testing is a type of white -box testing in which the source code is changed repeatedly using two or more mutation operators to generate mutated programs. The objective of this procedure is to improve the design and execution phases of testing by allowing testers to automatically evaluate their test cases. However, generating higher order mutants is challenging due to the large number of mutants needed and the complexity of the mutation search space. To address this challenge, the problem is modeled as a search problem. The purpose of this study is to propose a genetic algorithm-based search technique for mutation testing. The expected outcome is a reduction in the number of equivalent high order mutants produced, leading to a minimum number of mutant sets that produce an adequate mutation score. The experiments were carried out and the results were compared with a random search algorithm and four different versions of the proposed genetic algorithm which use different selection methods: roulette wheel, tournament, rank, and truncation selection. The results indicate that the number of equivalent mutants and the execution cost can be reduced using the proposed genetic algorithm with respect to the selection method.en_US
dc.language.isoenen_US
dc.publisherSlovak acad sciences inst informaticsen_US
dc.relation.ispartofComputing and Informaticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSearch-based mutation testingen_US
dc.subjecthigher order mutation testingen_US
dc.subjectequiva- lent mutantsen_US
dc.subjectgenetic algorithmsen_US
dc.subjectselection methodsen_US
dc.subjectCosten_US
dc.titleLeveraging genetic algorithms for efficient search-based higher order mutation testingen_US
dc.typeArticleen_US
dc.identifier.doi10.31577/cai_2024_3_709-
dc.identifier.scopus2-s2.0-85197304595en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57205586949-
dc.authorscopusid37107875500-
dc.identifier.volume43en_US
dc.identifier.issue3en_US
dc.identifier.startpage709en_US
dc.identifier.endpage734en_US
dc.identifier.wosWOS:001262122100008en_US
dc.institutionauthorUzunbayır, Serhat-
dc.institutionauthorKurtel, Kaan-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ4-
dc.identifier.wosqualityQ4-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.04. Software Engineering-
crisitem.author.dept05.04. Software Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

62
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.