Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.14365/5439
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sen, S.Y. | - |
dc.contributor.author | Cura, O.K. | - |
dc.contributor.author | Yilmaz, G.C. | - |
dc.contributor.author | Akan, A. | - |
dc.date.accessioned | 2024-08-25T15:13:09Z | - |
dc.date.available | 2024-08-25T15:13:09Z | - |
dc.date.issued | 2025 | - |
dc.identifier.issn | 0142-3312 | - |
dc.identifier.uri | https://doi.org/10.1177/01423312241267046 | - |
dc.description.abstract | Alzheimer’s dementia (AD) is a predominant neurological disorder arising from corruptions in brain functions and is characterized by a chronic or progressive nature. While the precise etiology of dementia remains incompletely elucidated, its manifestation is frequently associated with discernible structural and chemical alterations in the brain. Living with dementia significantly impacts individuals’ daily lives due to the resultant loss of cognitive functions. This study presents a novel method to monitor and detect AD using advanced signal processing applied to electroencephalography (EEG) signals. The intrinsic time-scale decomposition (ITD) algorithm is employed to extract proper rotation components (PRCs) from EEG signals, utilizing a 5-second EEG segment duration. The proposed method is compared with the detection of 5-second raw EEG segments using a custom one-dimensional convolutional neural network (1D CNN). Additionally, four different quartiles (Quartile 1 (Q1), Q2, Q3, and Q4) of EEG signals are considered to identify the most significant contributor to AD. Experimental results demonstrate that the ITD-based approach yields better detection performance compared to using raw EEG signals. The most promising result is achieved by the EEG-PRCs method in Q1, with an accuracy of 94.00%, sensitivity of 93.50%, and specificity of 93.90%. In contrast, the highest-performing result of the raw EEG segments method is in Q2, with an accuracy of 88.40%, sensitivity of 89.10%, and specificity of 87.60% in terms of detecting AD. © The Author(s) 2024. | en_US |
dc.language.iso | en | en_US |
dc.publisher | SAGE Publications Ltd | en_US |
dc.relation.ispartof | Transactions of the Institute of Measurement and Control | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Alzheimer’S Dementia Detection | en_US |
dc.subject | Decomposition | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Eeg Signals | en_US |
dc.subject | Hyper-Parameter Tuning | en_US |
dc.subject | One-Dimensional Convolutional Neural Networks | en_US |
dc.title | Classification of Alzheimer’s Dementia Eeg Signals Using Deep Learning | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1177/01423312241267046 | - |
dc.identifier.scopus | 2-s2.0-105001084244 | - |
dc.department | İzmir Ekonomi Üniversitesi | en_US |
dc.authorscopusid | 57215314563 | - |
dc.authorscopusid | 57195223021 | - |
dc.authorscopusid | 57419670500 | - |
dc.authorscopusid | 35617283100 | - |
dc.identifier.volume | 47 | en_US |
dc.identifier.issue | 7 | en_US |
dc.identifier.startpage | 1353 | en_US |
dc.identifier.endpage | 1365 | en_US |
dc.identifier.wos | WOS:001290595800001 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.identifier.wosquality | Q3 | - |
dc.description.woscitationindex | Science Citation Index Expanded | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
2
checked on May 21, 2025
WEB OF SCIENCETM
Citations
3
checked on May 21, 2025
Page view(s)
146
checked on May 19, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.