Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5439
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSen, Sena Yağmur-
dc.contributor.authorKarabiber Cura, Özlem-
dc.contributor.authorYılmaz, Gülce Coşku-
dc.contributor.authorAkan, Aydın-
dc.date.accessioned2024-08-25T15:13:09Z-
dc.date.available2024-08-25T15:13:09Z-
dc.date.issued2024-
dc.identifier.issn0142-3312-
dc.identifier.issn1477-0369-
dc.identifier.urihttps://doi.org/10.1177/01423312241267046-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5439-
dc.description.abstractAlzheimer's dementia (AD) is a predominant neurological disorder arising from corruptions in brain functions and is characterized by a chronic or progressive nature. While the precise etiology of dementia remains incompletely elucidated, its manifestation is frequently associated with discernible structural and chemical alterations in the brain. Living with dementia significantly impacts individuals' daily lives due to the resultant loss of cognitive functions. This study presents a novel method to monitor and detect AD using advanced signal processing applied to electroencephalography (EEG) signals. The intrinsic time-scale decomposition (ITD) algorithm is employed to extract proper rotation components (PRCs) from EEG signals, utilizing a 5-second EEG segment duration. The proposed method is compared with the detection of 5-second raw EEG segments using a custom one-dimensional convolutional neural network (1D CNN). Additionally, four different quartiles (Quartile 1 (Q1), Q2, Q3, and Q4) of EEG signals are considered to identify the most significant contributor to AD. Experimental results demonstrate that the ITD-based approach yields better detection performance compared to using raw EEG signals. The most promising result is achieved by the EEG-PRCs method in Q1, with an accuracy of 94.00%, sensitivity of 93.50%, and specificity of 93.90%. In contrast, the highest-performing result of the raw EEG segments method is in Q2, with an accuracy of 88.40%, sensitivity of 89.10%, and specificity of 87.60% in terms of detecting AD.en_US
dc.language.isoenen_US
dc.publisherSage publications ltden_US
dc.relation.ispartofTransactions of The Institute of Measurement and Controlen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlzheimer's dementia detectionen_US
dc.subjectEEG signalsen_US
dc.subjectdecompositionen_US
dc.subjectdeep learningen_US
dc.subjectone-dimensional convolutional neural networksen_US
dc.subjecthyper-parameter tuningen_US
dc.subjectDecompositionen_US
dc.subjectDiseaseen_US
dc.titleClassification of Alzheimer's dementia EEG signals using deep learningen_US
dc.typeArticleen_US
dc.typeArticle; Early Accessen_US
dc.identifier.doi10.1177/01423312241267046-
dc.identifier.scopus2-s2.0-85201196464en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authorscopusid57215314563-
dc.authorscopusid57195223021-
dc.authorscopusid57419670500-
dc.authorscopusid35617283100-
dc.identifier.wosWOS:001290595800001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ2-
dc.identifier.wosqualityQ3-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairetypeArticle; Early Access-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

70
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.