Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.14365/5452
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarabiber Cura, Özlem-
dc.contributor.authorAkan, Aydın-
dc.contributor.authorKocaaslan Atlı, Sibel-
dc.date.accessioned2024-08-25T15:13:12Z-
dc.date.available2024-08-25T15:13:12Z-
dc.date.issued2024-
dc.identifier.issn0208-5216-
dc.identifier.urihttps://doi.org/10.1016/j.bbe.2024.07.003-
dc.identifier.urihttps://hdl.handle.net/20.500.14365/5452-
dc.description.abstractAttention Deficit Hyperactivity Disorder (ADHD) is a neurological condition, typically manifesting in childhood. Behavioral studies are used to treat the illness, but there is no conclusive way to diagnose it. To comprehend changes in the brain, electroencephalography (EEG) signals of ADHD patients are frequently examined. In the proposed study, we introduce EEG feature map (EEG-FM)-based image construction to input deep learning architectures for classifying ADHD. To demonstrate the effectiveness of the proposed method, EEG data of 15 ADHD patients and 18 control subjects are analyzed and detection performance is presented. EEG-FM- based images are obtained using both traditional time domain features used in EEG analysis, such as Hjorth parameters (activity, mobility, complexity), skewness, kurtosis, and peak-to-peak, and nonlinear features such as the largest Lyapunov Exponent, correlation dimension, Hurst exponent, Katz fractal dimension, Higuchi fractal dimension, and approximation entropy. EEG-FM-based images are used to train DarkNet19 architecture and deep features are extracted for each image dataset. Fewer deep features are chosen for each image dataset using the Minimum Redundancy Maximum Relevance (mRMR) feature selection method, and the concatenated deep feature set is created by merging the selected features. Finally, various machine learning methods are used to classify the concatenated deep features. Our EEG-FM and DarkNet19-based approach yields classification accuracies for ADHD between 96.6% and 99.9%. Experimental results indicate that the use of EEG-FM-based images as input to DarkNet19 architecture gives significant advantages in the detection of ADHD.en_US
dc.description.sponsorshipIzmir University of Eco-nomics, Scientific Research Projects Coordination Unit [2022-07]en_US
dc.description.sponsorshipThis study was partially supported by Izmir University of Eco-nomics, Scientific Research Projects Coordination Unit. Project number: 2022-07.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofBiocybernetics and Biomedical Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectADHD detectionen_US
dc.subjectEEG feature mapsen_US
dc.subjectDeep feature extractionen_US
dc.subjectFeature concatenationen_US
dc.subjectMachine learningen_US
dc.subjectDiagnosisen_US
dc.titleDetection of Attention Deficit Hyperactivity Disorder based on EEG feature maps and deep learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.bbe.2024.07.003-
dc.identifier.scopus2-s2.0-85199255328en_US
dc.departmentİzmir Ekonomi Üniversitesien_US
dc.authoridAkan, Aydin/0000-0001-8894-5794-
dc.authorscopusid57195223021-
dc.authorscopusid35617283100-
dc.authorscopusid56709608600-
dc.identifier.volume44en_US
dc.identifier.issue3en_US
dc.identifier.startpage450en_US
dc.identifier.endpage460en_US
dc.identifier.wosWOS:001279062000001en_US
dc.institutionauthor-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopusqualityQ1-
dc.identifier.wosqualityQ1-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept05.06. Electrical and Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 20, 2024

Page view(s)

60
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.